
Survey of denoising, segmentation and classification
of magnetic resonance imaging for prostate cancer

Mamta Juneja, et al. [full author details at the end of the article]

Received: 28 November 2019 /Revised: 1 March 2021 /Accepted: 5 May 2021

# The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Prostate cancer (PCa) has become the second most dreadful cancer in men after lung
cancer. Traditional approaches used for treatment of PCa were manual, time consuming
and prone to subjective errors. Thus, there is a need for a Computer aided diagnosis
system (CADs) consisting of denoising, segmentation, and classification approaches for
diagnosis of PCa. CADs may act as a second opinion for the medical experts and save
their precious time used in manual analysis. Magnetic resonance imaging (MRI) is the
commonly used modality, as it produces detailed and fine contrast images of internal
organs for diagnosis of PCa, but it may contain a certain amount of rician and gaussian
noise which is necessary to be denoising before segmentation and classification.
Denoising offers several challenges such as suppressing of significance image details
leading in inaccurate segmentation and classification for prediction of abnormality. Thus,
improved denoising, segmentation, and classification approaches can overcome the
challenges by analyzing the pitfalls in the state of the art. This paper presents the
experimental analysis state of the art denoising and segmentation approaches to analyse
their performance based on the values of Peak signal to noise ratio (PSNR), Mean
squared error (MSE), Structured similarity index (SSIM), dice metric, area overlap and
accuracy. Based on the experimental analysis it was analysed that anisotropic filter
outperforms other filters for gaussian noise with PSNR of 28.29, MSE of 96.22 and
SSIM of 0.64. Also, for the rician noise anisotropic filter outperforms others with PSNR
of 28.06, MSE of 101.52 and SSIM of 0.01. Similarly, for the combined gaussian and
rician noise, anisotropic filter outperform others with PSNR of 28.34, MSE of 95.13 and
SSIM of 0.652. Further, the analysis of segmentation approaches such as contour and
shape-based, region/atlas based, thresholding based, clustering based and deep learning
based was performed. Amongst these approaches deep learning based segmentation was
found to outperform with dice metric of 0.89 and area overlap of 0.80. Also, CNN based
classification outperformed machine learning based Support vector machine (SVM), K
nearest neighbour (K-NN) and Random forest (RF) with 94.55% sensitivity, 93.34%
specificity, 95.45% accuracy. Finally, the paper discusses challenges and future scope
based on analysis in the concerned field for diagnosis of PCa.
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1 Introduction

Prostate Cancer (PCa) is a cancer that occurs in the prostate gland due to production of seminal fluid
used to transport and nourish sperms. PCa [86] forms cells in the prostate gland present in men
below the bladder in front of rectum as shown in Fig. 1, which increases in size with age due to rise
in male hormone androgen. Prostate is a crucial part of male reproductive system, improper
functioning of which could lead to drastic effects on excretion and reproduction phenomenon.
PCa is a slow growing cancer and most of its cases cannot be predicted until it reaches an advanced
stage. It actually hinders the functioning of semen production and urine filtration. Prostate cancer
doesn’t follow any particular symptom,most of the death cases are projected due to its irrelevant and
awkward nature such as pain during urination, difficulty in bladder control, blood in urine and
reduced flow of urine ejaculation etc. PCa may spread and form tumors leading to metastatic cancer
with symptoms like swelling and pain in legs, hips or feet. These signs and symptoms are suggested
ones but actual incidence of PCa can’t be predicted with so much ease. It needs special care and
awareness at certain stages before it becomes large enough to expand to other organs which is the
most dangerous situation. Although various types of PCa occur in the prostate, most of them
develop from glandular cells and other types are very rare. Recently, the American cancer society
predicted that there will be around 161,360 new cases of prostate cancer by 2020, leading in 26,730
fatalities.Whereas, the actual incidence of PCa in Indians is quite lower than otherwestern countries.
According to the Cytecare Cancer Hospitals report [85], the 5-year survival rate for prostate cancer is
64%. PCa is one amongst the top ten cancers in India which generally occurs in old age i.e. more
than 65 years but currently it has expanded its influence to youth as well. The cause for the same
presented in literature includes obesity, improper diet and genetic changes. Also, the study at
Mumbai revealed that the one who has gone through treatment or any surgery has better chances
of survival. Although, it is good for medical analysis yet awareness and prevention of PCa has a
significant role in enhancing survival rate. Projected cases of PCa in India are around 26,120 in 2010
and 28,079 in 2015.The study showed that it would be doubled by 2020 if left undiagnosed at an
early state. Prostate cancer has become the second most occurring cancer in men after lung cancer
[37]. Prostate delineation is a great challenge and everyday a new technology is brought up by
scientists. Identification and medication of prostate diseases has become a cumbersome task for the
experts. Prevention of PCa is not known in most cases as the cause of disease could not be defined

Fig. 1 Normal and abnormal prostate
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accurately and precisely. But some common practices and measures could reduce the chances of its
occurrence such as maintaining of body weight (avoid obesity), indulging into exercises, walking,
running and eating a proper diet (green vegetables and fruits), avoiding the intake of processed and
red meat and, reducing the intake of calcium rich dairy foods etc. These practices are common for
many types of cancers besides PCa.

Being diagnosed with PCa is a life changing experience for the man as tedious therapies
and treatments need complete commitment [10]. Commonly used procedures for investigation
almost remain the same for all types of cancers. But treatment procedures may vary according
to the patient’s condition. For instance CADs [59] provides an intelligent, natural, and reliable
way for the same. The goal of the CAD system is to be used as a second opinion for doctors
and radiologists and, assist them to degrade biopsy rate, enhance the diagnosis accuracy and
save their precious time. These systems use either CT, MRI or PET scans because each scan
contains hundreds of images called slices that must be evaluated by a radiologist. Investigation
of PCa consists of three-step phenomenon Detection, Diagnosis and Staging outlined in Fig. 2.

The prostate specific antigen blood test (PSA) and digital rectal exam (DRE) test can be used to
detect PCa when no symptoms are observed. In the PSA test, level of PSA (a protein secreted by
prostate gland) is measured whereas in DRE the expert inserts lubricated fingers (gloved) into the
rectum to examine contortion in size and shape of the prostate. The detection is the preliminary step
of almost all the types of cancer treatment. Its effectiveness decides the overall efficacy of the
diagnosis. The detection procedure gives us the location, size, shape of cancer in the prostate and if
performed at an earlier stage, can give better treatment options for PCa. After successful detection,
diagnosis is performed by physicians to confirm the presence of disease. There is a significant role of
imaging in primary diagnosis of PCa. The frequent analysis is performed by ultrasound and mp-
MRI. Another procedure used is prostate biopsy which indicates the level of PSA. In some cases,
prebiopsy would be required during diagnosis as it reduces the cumbersome procedure and painful
treatment of biopsy. With the use of MRI modality, it would be concise, simple and less painful to
diagnose PCa. MRI assists the experts to a great extent. Diagnosis with accurate results makes the
classification of PCa easy. Further, the diagnosis includes classification and staging of tumors using
advanced algorithms. Tumour classification separates out the level of tumours and provides a great
assistance to physicians. However, many of the classifications are based on benign and malignant
yet can be further categorized into T and N stages [11]. ‘T’ stage signifies the advanced stage of
tumour which spreads to nearby tissues and ‘N’ stage signifies, if PCa has spread to lymph nodes or
not. In some cases, stages could be analyzed by providing the ranks or some sort of numerics like
stage 1, stage 2, stage 3 and stage 4 as shown in Fig. 3. Usually, Stage 1 is the early stage which is
curable if diagnosed earlier, while stage 4 is the last stage and most fatal. Further, the number and
type of staging could be decided based on the type and condition of the cancer. Also, the comfort
and tolerance of patients are taken into consideration for suggesting the type of staging.

Detection Diagnosis Staging

Fig. 2 Investigation methodology
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2 Imaging modality used for diagnosis

Different imaging modalities are used in the literature for diagnosis of PCa such as CT, MRI,
mp-MRI, PET, Ultrasound, Radiomics etc. depending on the type and location of tumour [36].
Some of the commonly used imaging modalities are as follows.

2.1 CT [102]

Computed Tomography (CT) is a diagnostic test performed to take detailed images of internal
organs, bones, soft tissues and blood vessels. The images acquired comprise multiple slices for
further studies. CT scan uses the dose of ionizing radiation in patients for scanning which can
cause serious threats to human health. CT is one of the painless and precise diagnostic medical
investigations which use several x-ray projections to form a stack. CT scanning provides an
additional benefit of curing any injury to internal organs by identifying the injured and affected
part. Despite these benefits and applications, CT scan is considered less effective than MRI as
the contrast detail is more in case of MRI. The need of X-rays during scanning makes the

Fig. 3 Staging of Prostate
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process cumbersome and painful comparable to MRI. The advanced technologies make CT
suppressive. It needs modifications and modern algorithms to cope up with the advancements.
According to an estimation, 75 million CT exams were performed in the United States in the
year 2009. Also, the studies suggested that 5% to 30% of total treatments, costs hundreds to
thousands of dollars which is very high for developing countries like India. Figure 4 shows the
CT scan of a patient with prostate cancer.

2.2 MRI [57]

Magnetic Resonance Imaging (MRI) scan uses strong magnetic fields and radio waves to get a
detailed and fine image of internal organs with deformities. MRI is also a noninvasive painless
procedure like CT, but does not use fatal x-ray radiations. MRI gives more detailed and
contrast images of the anatomy which makes it easy for the physicians to find out any
abnormality in the body with more accuracy than other imaging modalities. It uses radio
frequency pulses to estimate and confirm the existence of tumour in the region of interest. MRI
scanners are available with different magnetic field strengths ranging between 0.5 to 3.0 T,
where 1.5 T is assumed as standard clinical setting. The quality of MRI scanning depends on
the magnetic strength, here 1.5 T magnetic strength provides lower signal as compared to
3.0 T. It has been observed that 3.0 T can give unexpectedly perfect and bright images by
performing scans in a small span of time, thereby decreasing the total scan time. According to
the study conducted in Japan, there are around 48 machines for every 100,000 patients i.e.
most MRI scanners per capita. Thus, it is considered to be better than other imaging modalities,
also it does not involve any exposure to harmful ionizing radiations. MRI scanning can also
produce mp-MRI images by different MRI sub-modalities like, dynamic contrast enhanced
(DCE) MRI, Diffusion Weighted Imaging (DWI), T1-weighted and T2-weighted etc. Figure 5
given below shows the MRI of prostate cancer.

2.3 Multiparametric MRI (mp-MRI) [4, 38]

Multiparametric MRI is much more famous than usual MRI due to the involvement of multiple
parameters in imaging. mp-MRI is an emerging modality that has been added to PSA based

Fig. 4 CT scan of prostate cancer [27]
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PCa screening to improve the diagnosis, complexity of therapies and management of cancer.
mp-MRI is a functional form of imaging technique essentially used to improve conventional
anatomical T1 and T2-weighted imaging. It also enhances the efficacy of diffusion-weighted
imaging (DWI) and dynamic contrast enhanced (DCE). Recently, an advanced technique MR
spectroscopy has come in favor of mp-MRI. However, spectroscopy is not an easy process to
be implemented as it requires post processing and inputs from the medical experts to make it
less effective than standard MRI examination. Collaboration of mp-MRI with other biopsies
could be an efficient way of treatment. Mp-MRI followed by TRUS biopsy reduced the
unnecessary diagnosis when compared with common mp-MRI. Mp-MRI is observed to be
more sensitive and less specific than TRUS biopsy. Fig. 6 shows the mp-MRI of prostate.

2.4 PET [28]

Positron emission tomography (PET) involves the imaging of internal organs with the help of
certain radiotracers. Fusion of PET with computed tomography (CT) and Magnetic Resonance
Imaging (MRI) are frequently used in the treatment of PCa. Positron emission tomography/

Fig. 6 mp-MRI -Prostate cancer [7]

Fig. 5 MRI scan of prostate cancer [95]
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computed tomography (PET/CT) has recently emerged as a promising diagnostic imaging
platform for prostate cancer. Currently, choline PET/CT has been the most extensively studied
modality which uses 18F-fluorodeoxyglucose (FDG), a workhorse radiopharmaceutical in
PET and does not find preference in PCa since these tumors show poor glucose uptake.
Likewise, there are many more radiotracers which are being used in PET according to the
requirements of treatment techniques. PET constitutes the challenge of true sensitivity and
specificity. The implications of metastatic findings on primary and recurrent staging need to be
explored more and more. Enhanced PET quantification opened many avenues for clinical
diagnosis, assessment of response to treatment and therapy planning. Conventional imaging
modalities are very poor in finding the extent of disease in the case of biochemical recurrence.
PET has advanced utility to deal with biochemical recurrence. PET Radiomics in non-small
cell lung cancer (NSCLC) make it more effective. Thus, response assessment and prediction
are one of the reasons discussed for using PET in Radiomics. Figure 7 shows the PET image of
the prostate.

2.5 Radiomics based [40]

Radiomics is an approach to extract a large number of quantitative features from medical
images using some data characterization algorithms. Radiomic features (features extracted)
have the ability to extricate hidden disease characteristics. Radiomics is a field of cancer
treatment and management which uses advanced imaging methods to extract a number of
quantitative features. It involves many of the application areas of radiomics like prediction of
treatment response and outcomes, tumour staging, tissue identification and assessment of
cancer genetics. Recently, radiomics is getting fused with machine learning methods to surplus
the quality of results which is increasing with speed. Radiomics has the potential power to
hasten better clinical decision making. The mining of radiomics based features for some sort of
correlations with patterns invented other sub modalities like radiogenomics, pyradiomics etc.
Pyradiomics reduces the issue of radiomics standardization which is derived from phenotypes
that can be linked to genomics data referred as “radiogenomics”. Radiomics provide an open

Fig. 7 PET-Prostate cancer [19]
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source platform for engineering of large-scale feature extraction with suitable reproducibility
and 3d tumour volume delineation. Figure 8 shows the steps of radiomics and radio genomics
of PCa.

Some of the common differences among the above discussed modalities are explained in
Table 1.

Based on the comparison of different imaging modalities, it can be analysed that MRI is a
commonly used and best imaging modality for diagnosis of PCa as it does not involve any
kind of harmful ionizing radiation as in the case of CT, ultrasound and X-ray imaging
modalities. Moreover, contrast details of soft tissues, highlighted images of blood vessels
are some of the specialized features of MRI which makes it better than other imaging
modalities. Speed of scanners leading in improvement of accuracy has been enhanced upto
a level to give better results for MRI.

MRI before biopsy is considered an essential detection technique for any part of the body.
In most of the cases, it is performed after a biased decision in initial testing of disease to
confirm the patient’s abnormality. AnMRI scan can detect any deformity in the body by going
through the contrast detailed images of the expected regions and body parts. Use of MRI has
also increased the ability of physicians to provide complete routine studies in approximately
ten to fifteen minutes to a large number of patients at the same time. Further, the increased
quality of machines provides precise results at the end of the experts to perform rest of the
procedures efficiently [12]. Thus, there is less probability to replace MRI with other imaging

Fig. 8 Radiomics and radio genomics of prostate cancer [101]
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modality for diagnosis, as it has reached a very high level of diagnostic significance and is thus
preferred.

3 MRI public datasets

Recently, for the diagnosis of PCa many datasets have been made publicly available in
different formats such as images, text etc. The use of these datasets is strictly dependent on
the situation of the problem. Two significant imaging datasets commonly used are as follows:

3.1 Prostate -benchmark dataset1

This dataset is publicly available since 2015 solely for the research purpose. It constitutes mp-
MRI data collected from two significant commercial scanners, first one is 1.5 T general electric

1 https://i2cvb.github.io/#prostate-data

Table 1 Comparison of Different Modalities

MODALITY CLINICAL
USAGE

ADVANTAGES DISADVANTAGES FUTURE
PROSPECTS

CT [97] Determining
seed location
during
prostate
brachythera-
py.

Beneficial in calculating
the extent of PCa to
bone tissue.

Challenging for
implementing real
time imaging

Lesion Detection,
cancer staging

MRI [39] Exquisite soft
tissue
contrast,
treatment
planning,
musculoskele-
tal neoplasms

No exposure to harmful
ionizing radiations,
excellent contrast
detail creates detailed
images of blood
vessels, much faster
and simple to operate

High cost associated,
Accessibility problem

for specific
protocols clinical
institutions

Cost, time and
Reproducibility of
the advanced
protocols making it
feasible for use as a
screening tool.

mp-MRI [39] Initial diagnosis
and
recurrence,
active
surveillance,
staging.

Excellent tissue contrast
for identification of
clinically significant
PCa

Expensive due to
in-bore time, lack
of real-time
imaging, requires
advanced training

Alternative inbore
options with real
time imaging being
developed

PET [18] Staging,
recurrence,
metastatic
spread

Offers ancillary
information for
tumor staging,
characterization and
metastatic
involvement

Expensive,
technological (e.g.
attenuation
correction) and/or
clinical challenges
(e.g. radiation ex-
posure)

Development of
specific
radionuclides is an
ongoing endeavor

Radiomics-based
[80]

Extraction of
large number
of
quantitative
features from
medical
images

Tumor Staging,
prediction of
treatment

Reproducibility and
computation of
radiomic features

Machine learning in
automation of data
characterization
algorithms
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(GE) and second one is 3.0 T Siemens scanner. The images in the dataset are mainly available in
DICOM (.dcm) format. Various sub-modalities of MRI such as T2w, DCE, DWI and Magnetic
Resonance Spectroscopic Imaging (MRSI) are acquired using different settings of scanners.
Moreover, some evaluation parameters are also discussed for diagnosis purposes. Apparent
diffusion coefficient (ADC) maps are provided in the data acquired with Siemens scanner. In
the dataset each modality comprises a certain set of ground-truth values. The ground-truth
contains four different classes: (i) prostate gland, (ii) peripheral zone (PZ), (iii) central gland
(CG), (iv) CaP. These classes make the dataset more effective for developing computer aided
detection systems. Till date, there is no such publicly available dataset with all these four
individual classes for ground-truth. For each of T2w, DCE and DWI, 300 images of mp-MRI
are provided in the dataset. Most of the filters have been implemented till date on this dataset and
testing of new filters are also being carried out by the researchers across the globe [64].

3.2 Prostate – MRI2

The dataset has been made public for use since 2016. This collection comprises 22,036
images. Prostate MRI is acquired with an endorectal and phased array surface coil at 3 T
(Philips Achieva). The main imaging modality used in the dataset is MRI with a few PET/CT
additional data collection. The dataset comprises 182 images from 26 patients, where each
patient had gone through biopsy and had confirmed the PCa. Patients examined in the dataset
have also undergone a robotic assisted radical prostatectomy. A mold was developed from
each MRI and the prostatectomy sample was taken in the mold to cut the same plane as the
MRI. The data was produced at the National Cancer Institute, Bethesda, Maryland, USA
between 2008 and 2010 [25].

4 Literature survey

4.1 Denoising

Denoising is the initial step of the CAD system which plays a major role in performance of
segmentation and classification. Many internal and external factors contribute in increasing the
noise level of an image leading in the development of different optimized image denoising
algorithms. Although MRI scanning techniques had effective results in signal-to-noise ratio
(SNR) acquisition speed and spatial resolution. The noise was produced during the procurement
process due to varied sources such as physiological processes, eddy currents, magnetic suscep-
tibilities, body motions etc. Denoising is necessary for accurate results in order to map the
structural and functional aspects of human anatomy [90, 119]. Common noises in MRI are rician
noise and gaussian noise. Rician noise is a single-dependent noise following rician distribution
making it difficult to separate from signals at low SNR regimes. It hampers image analysis by
worsening MR images quantitatively and qualitatively [9]. Whereas, gaussian noise consists of
normal distribution and identical probability density function (PDF). The divergence values could
be taken by the noise on being gaussian distributed making it gaussian noise [74].

The denoising filters used by different researchers for MRI are as follows:

2 https://wiki.cancerimagingarchive.net/display/Public/PROSTATE-MRI
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A low pass filter namedMedian filtermollifies the unpredictable noise via a non-linear process.
It smoothens the image by substituting the central pixel with the equivalent median of these pixels
subsiding beneath the mask. The dimensions of the edge are of n/2 x m/2 size, with nxm being the
size of windowmask is also eliminated with this filter leading to a fuzzy image.While for a window
mask of the dimensions n x m, every pixel’s median value is centered along the axes as (i, j), sorted
in increasing order to get a new value for the pixel (i, j) [52]. Later, Sazanita Isa et al. in 2015
proposed three varied algorithms as adaptive filter (ADF), average filter (AVF) and median filter
(MF) to denoise the MRI images. To increase the performance of the filters, the noise density was
increased upto 90%. The peak signal to noise ratio (PSNR) andmean squared error (MSE) added to
the efficiency of the filters. This filter gave a better image than other prescribed filters used in the
literature [55]. Recently, Hanafy et al. in 2018 proposed a modification in median filter algorithm.
TheMRI image having salt, pepper and gaussian noise alternatively called impulse noisewas passed
throughmedian filter, adaptivemedian filter and adaptive wiener filter. The performancemeasure of
different filters was evaluated and exploited against the PSNR. De-noising of the original imagewas
challenging as it caused blurring with addition of artifacts. The quality of the image got defective
while capturing, processing and storing it. While in clinical diagnosis, the high-quality images were
affected by different types of noise. Further to reduce it, the challenge was to regularize the image
while conserving the details. The MRI denoising filters were described in the dimensional,
transformed domain and exploitation of the statistical properties of signals. Thus, the filtering
reduced the noise and was responsible for the interpolation and resampling. The adaptive Wiener
filter used a pixel wise statistical approach using neighborhoods ofmx n size, to filter the image. The
non-linear filters performed a notch higher than the linear filters and smoothened the images by
reducing the intensity variations between the pixels. It was commonly used in signal processing and
time series processing. Thus, the high intensity impulse noise was filtered using above approaches
and the adaptive median filter was found to outperform other filters [6].

Wiener filter uses the least mean square (LMS) method to reduce the disparity between the
preferred and filtered output. The filter coefficients are adjusted and minimized according to the
disparity. By inverting the discrete fourier transform (DFT), a final resultant is achieved and hence
the noise process, power spectrum of signal and the wiener filter is defined [23]. Also, J. Mohan in
2013 presented a new filtering method for the magnetic resonance images (MRI) to remove rician
noise based on nonlocal neutrosophic set (NLNS) Wiener filtering. Neutrosophic set (NS) studied
various interactions with the ideational spectra applied into the image domain and performed
denoising. The MRI image was passed through the nonlocal mean and converted into NS domain
with three values indeterminacy (I), false (F) and true (T). Further, its entropy was defined to
measure the indeterminacy. The clinical images from the Brainweb database were denoised using
the w-wiener filter that produced better results than the other classical methods [79]. Biswas et al. in
2017 proposed a method for denoising of brain MRI using curvelet transform with addition of the
wiener filter. The images were distorted with various noises from the environment during acquisi-
tion, storage and transmission of the dataset. This hybrid approach was compared with curvelet and
wavelet-based technique and was more effective than the latter in performance and efficiency.
Further mean square error (MSE), structural similarity index measure (SSIM) and PSNR were
calculated to completely denoise the image [15].

Gaussian filter is a blur removing convolution filter to handle noise with an equivalent filter
generated by the neurons. Its application is a two-way process where the gaussian distributed
weighted mask is convolved to filter the image pixels in order to obtain the new pixels. Firstly, it is
carried out horizontally and then vertically, if the window size is large there are high levels of
blurring and vice-a-versa. This filter eliminates gaussian noise upto a great extent by blurring the
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edges and the gaussian function defined in both the dimensions [68]. Also, Roth and Black et al. in
2005 proposed a field of expert (FOE) model that consisted of computations with upper bound for
training along with the learning of the non-innate potentials. The log partition was tightly bounded
on the lower and upper bounds to get a basis rotation algorithm. The Gaussian potentials were used
in the machine learning algorithms [93]. Thereafter, Weiss and Freeman in 2007 applied the
Gaussian Scale Mixture (GSM) process for the FOE model before the use of legitimate images
[114]. Later, Barbu in 2009 used the suboptimal inference process to train Conditional Random
Field (CRF)/ Markov Random Field (MRF) that was based on the bayesian framework merged to
train an active random field (ARF) with optimized loss function for a pair of input images and
resultants. The images were denoised using collaboration of FOE andMRF [13]. Thereafter, Seetha
J in 2016 performed denoising of MRI using filters namely gaussian and median based on
commonly used criteria such as energy, contrast, entropy, PSNR, correlation and variance [98].
Similarly, Liu et al. in 2019 proposed an image restoration model that used maximum a posteriori
(MAP) estimation on the imaging dataset of MRI. Rician noise and intensity nonuniformity present
in these images were denoised using an optimization algorithm based on ADMM. It divided the
problem into various subproblems that were solved by either closed-form solutions or Newton’s
method. The intensity divergence actually underestimated the noise and so was better to handle the
rician noise. Earlier these noises were individually dealt with, however theMAP estimator regarded
MRI data as amalgamation of dual multiplicative components, the real identity, the bias field and the
rician noise. The calculations and experiments performed on this method using real and synthetic
MR datasets confirmed its efficiency as compared to other methods in the literature [72].

Mean filter substitutes each pixel with a mean value of the pixels through a convolution process
to reduce the level of intensity deviation between two successive pixels. The neighboring pixel
values are not taken into account, hence smoothens the overall image. For a larger window size, the
noise is removed significantly adding onto the blurring effects simultaneously [48]. In the same year,
Buades et al. in 2005 devised the Non-LocalMeans filter utilizing the redundant image information.
Here, the pixel valuewas given as the output to calculate themean of all the intensities of pixels in an
image. This algorithm was quite complex wherein the family of weights relied on the closeness
between the pixels i and j. These pixels were measured as a non-increasing function of the weighted
euclidean distance between two pixels [16]. With few modifications, Fernandez et al. in 2008
devised the linear minimum mean square error (LMMSE). This method was adopted for the rician
distribution and the noise power was estimated automatically. It restored the image by suppressing
the noise with easy implementation and feasible computation cost [5]. Further, Luisier et al. in 2012
proposed the chi-square unbiased risk estimation (CURE). The recommendedmethod could remove
the noise from the squared-magnitudeMR images. Linear expansion of thresholds (LET) were also
familiarized which were executed on the filter bank transform coefficients. The wavelet transform
was the inference of the dependent CURE approach [73]. Also, Rajan et al. in 2012 recommended
that from the total methods proposed for image denoising, only some procedures could estimate the
real characteristics of theMR images that achieved phased-array coils. The data collected from these
phased-array coils were transformed into the root sum of squares in an environment free of noise
correlations by following a non-central x distribution. The noise level became dimensionally
fluctuating in intensity due to an increase in the acquisition speed of subsampling in the k-space
of the GRAPPA method. The non-central–x distribution and the spatial essence of the noise was
removed using multiple-coil acquired MR images [87]. In the same year, Gloshan et al. in 2013
recommended an LMMSE based strategy for the 3-DMRI denoising technique. The inefficiency of
the LMMSE method estimated the noise less signals and the fact that the 3-D images contain
samples to improve the estimation that made the approach to change a bit. The MR data was
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modelled as random fields and the samples were chosen from a large portion of the given dataset.
Based on the statistical moments of the image, the effective similarity measure was present and the
local signal-to-noise ratio chose the filters and the approach to recursively denoise the image while
safeguarding the anatomy of the image [41]. Further, Sudeep et al. in 2015 initiated the four filters
for denoising that relied on the linear minimum mean square error (LMMSE) estimation. The
performance was increased using natural redundancy and self-similarity techniques in the MRI
imaging using the best samples for the LMMSE estimation. The uncorrelated noise was removed
using the non-local PCA domain shrinkage. The Rician LMMSE enhanced the magnitude of the
images by estimating a closed form systematic elucidation to the inverse problem. The filtering was
done sub optimally as it could not take privilege of the data redundancy. The nonlocal implemen-
tation was done via LMMSE estimation method and the euclidean distance was computed by
similarity weights in the spatial or transformed domain. This filter decreased the signal reliant
fundamental unit of the noise but the remaining white part was filtered via second stage LMMSE
filtering in the PCA (Principal component analysis) domain. Hence the given filters surpassed the
performance given by the state-of-the-art methods [104]. Similarly, Manjon et al. in 2015 proposed
an MRI denoising technique that took the advantage of both the self-similarity properties and
sparseness of theMRI imaging. The local PCA allowed the sparse representation compared to local
DCT. The dual stage proposal filtered the image having noise with a nonlocal PCA thresholding
strategywhich checked the elevation in the noisy image automatically. The other approach used this
filtered imagewithin a rotationally invariant non-localmeans filter to correct the rician noise induced
locally. The comparisons made with the prescribed state-of-the-art methods revealed its efficiency
[76]. Further, Klosowski J in 2017 proposed a denoising filter for real-time MRI. The small details
were preserved while removing the framework noise without any smearing, patch or blur artifacts.
The comprehensive conservation of the image was enhanced by a weighting kernel that roughly
gave the exponential weight and removed the background noise. The filter used signal-to-ratio
(SNR) to at least 60% while preserving the details. There was a straightforward estimation to a
number greater than 100 complex frames per second via graphics processing units [60]. Also, Yuan
et al. in 2018 proposed an improved variational level set method to remove the noise from the MRI
degraded using rician noise. The automatic assessment of the standard deviation of rician noise gave
more robust outputs. The fluctuating course method of multipliers ADMMwas used alongwith this
approach to increase its performance and capability [116].More recently, Sharma et al. in 2019 gave
the concept of sylvester-lyapunov equation and non-local means method as the old used filters did
not give the desirable results. The denoising techniques retained and amplified the diagnostic related
information of the images. The hybrid denoising techniques were contrasted with the other filters in
the literature by changing the noise levels in the dataset of brain images and the real approach used
PSNR, SSIM coefficients to calculate efficiency [100].

Wavelet filter uses energy compaction features to denoise the images suffering from
gaussian noise. An input and noisy signal includes noise of salt, pepper, speckle or
gaussians, which undergoes a wavelet transform succeeded by an inverse wavelet
transform. While transforming, the noise is homogeneously distributed throughout the
coefficients, but the large coefficients have the maximum information. At times, the
selected threshold may not be applicable for the apt distribution of signal components of
the noise at different proportions. Discrete Wavelet Transform (DWT) characterizes the
features spectrally and removes out maximum noise keeping the necessary information.
Its demerits are that it lacks adaptivity, phase information and is computationally
expensive. The shifts in signal results in wavelet uncertainty coefficients. These filters
can be used in quantum mechanics, fingerprint verification, speech recognition, signal
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processing and related fields [43]. Cands and Donoho in 1999 proposed the curvelet
transform model using multiscale geometric analysis. The anisotropy and directionality
detected the edge directions with the small number of coefficients to handle the curve
discontinuities. In the denoising process, curvelet threshold norms were calculated and
the noisy image was transformed using a curvelet filter. Finally, the image was denoised
by the application of the hard thresholding to obtain curvelet coefficients succeeded by
the inverse curvelet transform [20]. After a few years, Romberg et al. in 2001 gave the
nine meta-parameters in the Hidden Markov Tree (HMT) model. These were fixed using
Bayesian universal HMT (Uhmt) independent of the number of wavelet scales and
image size. It could be used in real life as it was quite simple and did not require any
training. The structure of the image was integrated into a smart wavelet shrinkage rule
using a bayesian methodology and the prediction helped to minimize the noise [92].
Further, Do and Vetterli in 2005 laid the foundation of a contourlet filter which captured
the contours and other details of the image. The two distinguishing and subsequent
decomposition phases in multiple scales, directions characterized the texture features
and contours of an image. The contourlet transformations were used to perform the
multiscale decomposition followed by calculation of scales and the number of directions
with thresholding applying on them. The inverse transform on the contourlet coeffi-
cients reconstructed the image free of noise [29]. Similarly, Bhadauria et al. in 2013
recommended a denoising method for magnetic resonance imaging (MRI). Due to the
acquisition of images from different machines, the medical images contain various
noises that hamper the required information in the images. The proposed method
blended the denoised images using total variation (TV) method, edge formation and
curvelet method. The noise residual of the TV method provided the edge information
that was processed using a curvelet transform. The efficiency of this approach was
depicted in edge preservation and noise suppression [14].

The bilateral filter, a non-linear filtering process decomposes an image into a variety of
proportions after the required changes with no creation of aureoles. It is therefore used in
denoising and many computational photography applications such as relighting. Its working is
similar to the gaussian convolution and is reliant on the two inputs as the size and contrast of
the features. The calculations include mean weights of the neighboring pixels along with value
difference to detect the edge information while smoothening [17].

Perona and Malik et al. in 1990 gave anisotropic diffusion filter to maintain the object
periphery while raising the image quality. The edge sharpening reduced the noise in uniform
regions and the non-linear diffusion scheme was used to localize the linear diffusion filtering
and avoid blurring. The problem was determined in the form of a second order partial
differential equation of heat. The places having higher probability to be edges were located
and diffusivity was diminished therein [84].

Finally, Table 2 presents the summary of all the denoising approaches used by different
researchers from time to time as discussed above and Table 3 presents the comparison of
broadly used state of the art denoising approaches with pros and cons of each approach.

4.2 Segmentation

This section presents the approaches used by different researchers for segmentation of prostate.
The approaches used are broadly categorized into six modules i.e. Contour and shape based,
Region/Atlas based, Thresholding, Clustering, Deep learning and Hybrid.
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Table 2 Summary of Denoising Approaches

Authors Year Approach Pros Cons

Cands et al. [20] 1999 Curvelet transform
model

Visually lossless Creates problem in
formation
of curvelets on smooth
areas

Romberg et al.
[92]

2001 Hidden Markov
Tree model

Supported the
prediction
of wavelet
coefficient,

Independent of image
size

Works only on horizontal,
vertical and diagonal
edges

Do and Vetterli
[29]

2005 Contourlet filter High directionality,
adjustable aspect
ratio

High computations

Buades et al. [16] 2005 Non-Local Means filter Conserves the
originality
of image

Intricates weight
calculations

Roth and Black
[93]

2005 Log partition Used for gaussian noise Only suitable for specific
noise

Weiss and
Freeman [114]

2007 Gaussian scale mixture
process

Sampling is not
required

Handles small amount of
noise only

Fernandez et al.
[5]

2008 Linear minimum mean
square error

Feasible computation
cost

Suppress image details
along with noise

Barbu [13] 2009 Markov random field/
Conditional random field

High accuracy and
speed

Works well with higher
number of parameters

Luisier et al. [73] 2012 Chi-square unbiased risk
estimation

Flexible computation Suppress image details

Rajan et al. [87] 2012 GRAPPA method Removes spatial noise Complex computation
Bhadauria

et al. [14]
2013 Total variational method,

curvelet method
Preserves edge Modifies smooth areas

Gloshan et al. [41] 2013 LMMSE-based strategy Recursive noise
removal
with preservation of
anatomy

Inefficient for high noise
signals

J. Mohan [79] 2013 Nonlocal neutrosophic
set wiener filtering

Removes rician noise Filters only in non-local
means

Sazanita Isa
et al. [55]

2015 Median filter, adaptive
filter and average filter

MSE and PSNR
increase the
efficiency

Increased noise density

Sudeep
et al. [104]

2015 Linear minimum mean
square error estimation

Self-similarity and
natural redundancy

Does not use redundant
data

Manjon
et al. [76]

2015 Nonlocal PCA thresholding Self-similarity and
natural redundancy

Requires complex staging
approach

Seetha J. [98] 2016 Median and gaussian filters Increased efficiency Computationally
expensive

Klosowki J [60] 2017 Weighting kernel and
graphics processing units

Improved SNR,
Straightforward
computations

Approximation of
exponential weight

Biswas et al. [15] 2017 Curvelet transform with
addition of the wiener filter

Improved performance Inverse filtering and
noise smoothing

Hanafy et al. [6] 2018 Median filter, adaptive
median
filter and adaptive
wiener filter

Impulse noise removal Costly and complex to
computation

Yuan et al. [116] 2018 Variational level set method
and
alternating direction

Image gradient retains
edge details

Does not eliminate
heterogenous noise
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4.2.1 Contour and shape based approaches

These approaches are based on the appearance of objects and rely primarily on their shape. It
considers bounding contours as cue for detection of objects, which includes approaches such
as active contour, active shape model etc. for extraction of desired region of interest [66].
Some of the approaches used by researchers for segmentation of prostate using contour and
shape based are as follows:

Samiee et al. in 2006, presented a semi-automatic segmentation algorithm based on the
orientation property which is intrinsic to the prostate MRI used in evaluating the direction of
tracing curves. On evaluating the algorithm on 2 MRI volumes with 19 slices each, the
proposed algorithm yielded an average DSC values of 0.8856 with 0.0041 variance of the
dataset with the deflated endorectal coil and the one with inflated endorectal coil yielding an
average DSC of 0.9057 with 0.0014 variance. The segmentation process took no more than 5 s
using MATLAB and an intel Pentium 4, 2.8 GHz PC platform [96]. Thereafter, in 2007 Zhu
et al. proposed a hybrid methodology including both 2D and 3D Active shape models (ASM)
to deal with sparse 3D data. Rather than aiming at the segmentation of local optimum on
separate slices, the proposed paradigm aimed at segmenting a global optimum of the 3D
object. The dataset for evaluation contained 26 MRI sequences with a total of 288 slices
containing the prostate gland. The proposed algorithm indicated a high precision value as
compared to 2D and pure 3D ASM by yielding the lowest RMSDmean and standard deviation
values of 5.4811 and 2.9082 respectively [118]. Further, Flores-Tapia et al. in 2008, developed

Table 2 (continued)

Authors Year Approach Pros Cons

method
of multipliers

Sharma
et al. [100]

2019 Sylvester lyapunov equation
and non-local means
method

Improved performance Complex in computation.

Liu et al. [72] 2019 Maximum a posteriori
estimation

Combination of two
multiplicative
components

Intensity nonuniformity
miscalculate the results

Table 3 Comparison of Denoising approaches

S.No. Approach used Pros Cons

1 Median filter Non linear nature of this filter
preserve sharp details

It is difficult to treat the analytical
effect of this filter.

2 Wiener filter Offers perfect reconstruction Requires prior knowledge of image
without noise.

3 Gaussian filter Perform effective smoothing May lose significant edge details
4 Mean filter Smoothens the image May lose significant edge details
5 Wavelet filter Efficient reconstruction and

computationally less expensive
Produce blurring effect

6 Bilateral filter Preserves edges Causes Gradient distortion
7 Anisotropic filter It reduces noise in flat regions

as well preserving significant
edge details

May reduce image resolution
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a novel paradigm for MRI prostate image segmentation. In order to accurately detect the
borders around the prostate, the proposed method exploited the disparate behavior presented
by noise in the wavelet domain and signal singularities. The prior knowledge about the general
shape of the prostate and set of spatially variant rules were utilized to trace the prostate
contour. The performance of the proposed method was assessed by applying the algorithm to a
pelvic MRI volume formed by 19 slices. The mean DSC value for the processed data was
observed to be 0.93 ± .005 [32].

Thereafter, in 2010 Gao et al. proposed a unified shape-based paradigm to extract the prostate
fromMRI. The proposed algorithm represented the shapes of a training set as point clouds in order
to solve the registration problem by exploiting additional global aspects of registration by the virtue
of a particle filtering based scheme. Additionally, once the shapes were registered, a cost function
was designed to incorporate both the local image statistics as well as the learnt shape prior. The
proposedmethod performed better with the running time of 2.3 swhen comparedwithMSE andMI
with run time being 433.5 s and 610.0 s respectively. The segmentation results were validated
employing 33 MRI prostate data yielding mean DSC of 0.84 with standard deviation of 0.03, 95%
of HD and (8.10, 1.50) standard deviation [34]. In 2011, Liu et al. gave an unsupervised paradigm
employing shape-based active contour model without needing the training data for segmentation.
The segmentation was performed on 3D apparent diffusion coefficient (ADC) images derived from
diffusion-weighted imaging (DWI) MRI. The algorithm estimated the shape of the prostate by
applying course segmentation using a region-based active contour model for 3D ADC images to
perform segmentation with shape priors. After the additional surface refinement, the segmented
prostate volume was generated. The algorithmwas evaluated on 10 patients yielding DSC of 0.810
± 0.050, mean absolute distance (MAD) of 2.67 ± 0.650 mm and HD of 9.07 ± 1.64 mm for the
whole prostate gland [21]. After that in 2012,Malmberg et al. proposed a generic tool for interactive
image segmentation using smart paint. Transversal T2-weightedMRIwas used for the evaluation of
the proposed method. The proposed segmentation tool worked on the principle of user adding or
removing details in 3D and the user interface displaying the segmentation result in 2D slices through
the object. To quantitativelymeasure the difference between obtained segmentations and the ground
truth, dice’s coefficient was used. The segmentation using this method took 2 rounds for segmenting
the training set and the mean dice coefficient for the first and second rounds were 0.82 and 0.86
respectively. It took 3 min and 30 s on an average to segment a volume in the training set and 4 min
44 s for the testing set [75]. Similarly, Chandra et al. in 2012 presented a novel paradigm to
automatically segment the prostate and its seminal vesicles. The proposed deformable model was
case specific and consisted of an individual patient’s initialized triangulated surface and image
feature model. The presented segmentation algorithm consisted of regularizing the deformations
produced by employing the image feature model via surface smoothing algorithms which was then
automatically validated by the virtue of an optimized shape model. The proposed method produced
a mean and median DSC of 0.85 and 0.87 with 3 T MR clinical scans of 50 patients used for
validation. The median DSC result had a mean absolute surface error of 1.85 mm [22]. Later in
2014, Guo et al. presented a new deformable, nonparametric appearance paradigm for prostate
segmentation in MRI. The proposed model was based on a novel learning method incorporating
distributed discriminative dictionary (DDD) learning. The learningmethod used was able to capture
precise distinctions in image appearance. The proposed method aimed to robustly segment the
prostate gland in 3D T2-weighted MRI images by using both appearance and sparse shape models
to derive a deformable model for segmentation. For the first internal dataset, the proposed method
yielded a DSC of 0.891 and for the second dataset which was the MICCAI 2012 challenge dataset,
the proposedmethod yielded aDSCof 0.874, which also achieved improved segmentation accuracy
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than other methods under comparison [46]. Further in 2015, Tian et al. presented a “Supervoxel”
based method for prostate segmentation. The proposed paradigm employed an energy function and
smoothness terms to model the labeling process. The smoothness term was constructed taking into
account the geometric relationship between two adjacent supervoxel and the data term to estimate
the probability of a supervoxel according to the shape feature. The experimental results achieved by
the algorithm on 12 prostate volumes with mean dice similarity coefficient of 86.9%± 3.2%
suggested the competence of the graph cuts algorithm for handling large three dimensional (3D)
medical data. The presented algorithm yielded a smooth surface based on the output of the 3D graph
cut by utilizing a level set in order to segment the prostate [105].With fewmodifications, He et al. in
2017 gave a robust, fully automatic prostate segmentationmethod based on active shapemodel. The
presented model employed a novel adaptive feature learning probability boosting tree (AFL-PBT)
for initialization, and deep learning techniques were utilized to re-extract features. Also, in order to
enhance the optimal boundary, a narrow searching band utilizing the PBT map was used. The
algorithmwhen tested onMICCAI PROMISE12 test data sets produced ameanDSCof 84%with a
standard deviation of 4%. On contrary to the traditional ASMmethod, the proposed model had the
entire proposed framework insensitive to model initialization. Also, the model employed a CNN
based deep learning design for boundary profile modeling. The use of a relatively simple CNN
model and 2 level probability boosting tree served as the agents limiting the accuracy of the
proposed method [50]. In the same year 2017, Guo et al. proposed a novel deformable prostate
segmentationmethod forMRI. The presented algorithm integrated the deep feature learningwith the
sparse patchmatching andwas broadly evaluated on the dataset comprising 66T2-weighted prostate
MRI. To incorporate more succinct and effective learned features than the handcrafted features, the
proposedmethod employed the stacked sparse auto-encoder (SSAE) to learn the latent features from
theMRI and used a sparse patch matching method to deduce a prostate likelihood map. Finally, the
integration of the sparse shape model and the likelihood map was achieved by employing the
deformable segmentation. The proposed supervised SSAEwith deformablemodel achievedDSCof
87.8 ± 4.0, precision of 91.6 ± 6.5, hausdorff of 7.43 ± 2.82 mm and ASD of 1.59 ± 0.51
outperforming the ASM, the intensity based deformable model, and the handcrafted based deform-
able model with deviations of 10.7%, 2.1% and 1.6%, respectively [47].

4.2.2 Region/atlas based approaches

These approaches use pre-labeled images, called atlas or initial seed to segment the image with
user involvement. The approach uses three phases, firstly to align objective image with
multiple or single images/seeds, thereafter relocation to target from atlas/seed to objective
image and finally, delineation to relocate labels applied to extract the target image [91]. Studies
performed by different researchers for segmentation of prostate using region/ atlas-based
approach are as follows:

Initially, in 2010 Martin et al. proposed a fully automatic paradigm for the segmentation of the
prostate in 3D magnetic resonance images. The proposed method registered a target image (to be
segmented) to a labeled image (atlas). The encompassed deformable model substantially refined the
segmentation obtained using the atlas by reducing the mean errors from 3.14 to 2.41 mm. The
proposed segmentation algorithm incorporates two stages. A probabilistic segmentation was ob-
tained by tracing the probability map of the atlas to the patient’s anatomy after the patient has been
registered. Later in the second stage, the deformable model was driven by the detection of boundary
points along surface profiles. The proposed paradigm was validated using a cross- validation on 36
patients, yielding a reasonable accuracy with a median Dice similarity coefficient of 0.87 [77].
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Thereafter, in 2011 Dowling et al. presented a swift fully automatic paradigmwhich encompassed a
dynamic multi-atlas label fusion technique for segmenting the prostate from 3DMRI. A contrasting
result was provided when an average shape atlas and the multi-atlas approach were evaluated using
the same clinical dataset and manual contours from 50 clinical scans. The proposed method
generated a median dice similarity coefficient of 0.86 with an average surface error of 2.00 mm.
For non-rigid registration the diffeomorphic demon’s method was employed and a comparison of
alternate metrics for atlas selection was presented [30]. Also, Gao et al. in 2011 presented a coupled
framework including the atlas-based methods and active contours. The proposed paradigm was
evaluated on 2 different datasets one of which had 30 images of 15 patients downloaded from
publicly available repository and the other included 9 sets of MRI collected from the brigham and
women’s hospital. This method effectively yielded mean DSC of 0.79 and 0.81 for the respective
datasets. The method aimed at using the two widely used families of techniques in order to exploit
each’s advantage [35]. Mohammad et al. suggested an auto contouring approach utilizing region
growing with initial seed followed by canny edge detector for prostate segmentation. This approach
overcomes the uncertainties caused due to positioning errors by different registration algorithms
[78]. Also Subudhi et al. in 2016 used region growing for segmentation of prostate fromMRI. The
algorithm starts with dividing the image into blocks having non-overlapping regions. Image was
then fourier transformed with output block same as input block. The seed point for region growing
was selected by using threshold operator [103].

4.2.3 Thresholding based segmentation approaches

Thresholding is an approach of partitioning the image into foreground and background in such
a way that foreground contains the desired region of interest and background is everything else
foreground. The working principle of the approach is selecting a threshold value for assigning
labels below and above thresholds, to get the segmented image [42]. Some of the approaches
used by researchers for segmentation of prostate using thresholding are as follows:

Ozer et al. in 2010 utilized thresholding to perform segmentation of the prostate using a
support vector machine and relevance vector machine. Support vector used hyperplane in
higher dimensional feature space based on the maximum margin. Whereas, a relative vector
uses a probabilistic method with the same function as that of a support vector. Further, the
threshold was used to select equal distances, assuming test data equally likely from two classes
[82]. Thereafter, in 2012 Gopinath suggested segmentation of prostate from MRI using
thresholding based segmentation followed by watershed and morphology. Also, delineation
of cancerous region was performed to identify it as malignant or benign [44].

4.2.4 Clustering based segmentation approaches

Clustering is an iterative approach of grouping a cluster in such a way that the objects having
similar behavior lie on one group, while rest on another group based on similarities. It is based
on the value of distance function, density function, a number of clusters and thresholds to be
formed [33]. Some of the approaches used by researchers for segmentation of prostate using
clustering are as follows:

Guo et al. in 2014 presented an automated approach for segmentation of prostate using
fuzzy c means clustering. This method was based on a combination of multiparametric MRI,
which obtains fuzzy information of cancerous tissue. Thereafter, a fuzzy fusion operator on the
basis of the Bayesian model and gibbs penalty was applied, which produces maps of
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membership degree for the desired region of interest [46]. Rundo et al. in 2017 also suggested
clustering based unsupervised machine learning approach for segmentation of prostate from
multiparametric MRI. The value of dice similarity coefficient in this case of multiparametric
was 90.77 ± 1.75 which was better than processing mono parametric individually [94].

4.2.5 Deep learning-based approaches

Deep learning is a class of machine learning with multiple layers to extract high level functions
where lower layers can be used to identify edges and higher layers can be used to identify
meaningful information [61]. Commonly used deep learning approaches for prostate cancer
are as follows:

Clark et al. in 2017 presented a fully automatic algorithm for delineation of the prostate
gland and transition zone (TZ) in diffusion-weighted imaging (DWI) via a stack of fully
convolutional neural networks. Two ConvNets were included in a successive manner to
perform the segmentation task. The proposed paradigm was assessed by applying it to DWI
of 104 patients and produced the median dice similarity coefficients of 0.93 and 0.88 for the
prostate gland and TZ respectively. The algorithm eliminated the necessity for the radiologist’s
intervention in locating the prostate containing slices by automatically detecting the slices
containing the portion of prostate gland and then segmenting with an average accuracy of 0.97
[26]. Further, Karimi et al. in 2018 gave a CNN-based method for prostate segmentation in
MRI that employed statistical shape models. Very large number of parameters posed a major
challenge for the proposed model. The proposed paradigm synthesized additional informative
training data by exploiting the knowledge about the expected shape variations and the
effectiveness of the regularization techniques that could augment the performance of the
trained model. A stage wise training strategy was employed including the data augmentation
methods whereby the prostate surface key points were deformed in accordance with the
displacements computed based on the shape model. The training dataset consisted of 49 T2-
weighted axial MR images. The method achieved a Dice score of 0.88, which was obtained
using both elastic net and spectral dropout for regularization [58]. Later in 2018 To et al.
proposed a 3D deep dense multipath CNN for the prostate segmentation in MRI. The proposed
architecture employed two independent datasets to assess its performance. The network was
successively composed of an encoder and a decoder processing block. Also, among the three
variants of the proposed network, 3D DM-net-4 feat demanded the longest training time
whereas 3D DM-net-16 feat entailed the shortest training time. The first dataset consisted of
100 training cases and 50 testing cases which achieved the DSC of 95.11 with less than 0.80
standard deviation. The results confirmed the robustness to the intrinsic alterations in signal
intensities and shape of the gland in the proposed network. Employing the second dataset
comprising 30 testing cases yielded dice coefficient on an average of 89.01 [108]. Also,
Hossain et al. in 2018 developed a novel model to automatically segment the MRI images of
the prostate region using a VGG19-based fully convolutional neural network. The proposed
algorithm worked on identifying a region of interest in the image using semantic segmentation,
a pixel-wise classification of the content of the input image. Adding residual/skip connections
between neighboring and distant layers created a semantic segmentation structure thereby
demonstrating the contribution of residual connections in FCN to obtain a greater accuracy in
semantic segmentation. The proposed deep learning method achieved a mean intersection-
over-union (IU) accuracy of 91.48% and a dice similarity coefficient (DSC) of 94.57% [51].
After that with few modifications, Zhu et al. developed a fully automatic approach to segment
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the prostate outer contour and the peripheral zone (PZ) contour with high efficacy. The
cropping of the region of interest on DWIs and cascading of two fully convolutional networks
on T2WIs ameliorated the performance especially for PZ identification. The DSC was used as
the objective function thus averting the learning process to get trapped in local minima and as a
result not being able to obtain a convergence model. To efficiently assess the proposed
algorithm, 1416 prostate MR images from 163 subjects were collated. The mean DSC
achieved for the proposed method was 92.7 ± 4.2% for the WG and 79.3 ± 10.4% for the PZ
[121]. Similarly, Tian et al. in 2018 developed a fully convolutional neural network (CNN) to
automatically pixel wise segment the prostate on T2-weighted (T2W)MRI. The algorithm was
applied on three data sets containing prostate MRI of 140 patients. Using FCN for image
segmentation provided the advantage to use the entire image as an input to the network for
both training and testing stages. It led to an efficient prostate MRI segmentation in about 4 s.
Caffe was used for implementation of the proposed method. In contrast to the manual labeled
ground truth, the proposed CNNmodel of prostate segmentation (PSNet) obtained a mean dice
similarity coefficient of 85.0 ± 3.8%, RVD of 4.1%, HD of 9.3 mm and ASD of 3.0 mm [107].
Recently, Hassanzadeh et al. in 2019 developed and analyzed eight disparate FCNNs based
deep 2D network paradigms for automatic MRI prostate segmentation. Large number of
segmentation results had a mean DSC between 0.8 and 1.0 when evaluated on the PROM-
ISE12 dataset with ten-fold cross-validation. The presented analysis resulted in a non-bypass
dense model unsurpassed by all eight proposed networks for prostate segmentation. To further
improve the performance of segmentation, the proposed method incorporated the analysis of
various structures of shortcut connections together with the size of a deep network considering
MRI slices, MRI volumes and test folds. The non-bypass dense model outperformed all other
models with 0.873 mean DSC [49].

4.2.6 Hybrid based approaches

Hybrid approach is a combination of two or more approaches in a defined order to extract the
desired region of interest [54]. Different hybrid approaches used till date for segmentation of
prostate are as follows:

Liu et al. in 2009 proposed a novel unsupervised segmentation algorithm for prostate
cancer. The fuzzy markov random fields (fuzzy MRFs) were employed for the segmentation of
prostate fromMRI. The algorithm is based on allowing each pixel to belong simultaneously to
more than one class. The presented algorithm incorporated a novel strategy of clustering the
data and estimating the parameters defining the markovian distribution of the measured data
simultaneously. The proposed method when compared with the K-means for MRF parameter
estimation and segmentation yielded an improved specificity, sensitivity and accuracy of
99.85%, 99.37%, 99.76% respectively [70]. After a few years in 2015, Alvarez et al. presented
an automatic prostate segmentation incorporating a novel SURF based similarity metric and
additionally employed a label fusion process. The model was evaluated using a public dataset
PROMISE12, composed of 50MRI cases and comprising 24MRI acquired with an endorectal
coil. Taking the vantage of both the individual shape variation and intra individual salient point
representation, the proposed algorithm retrieved similar prostate MRI from the dataset, which
were then non-rigidly registered towards a new MRI. The method achieved a robust shape
representation from a reduced space of atlases. The proposed method achieved the DSC of
0.79 ± 0.10 with 10 numbers of atlases [8]. Further, in 2016 Tian et al. used superpixels as the
elemental processing units and developed a 3D superpixel-based graph cut algorithm to obtain
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the prostate surface. The presented method yielded a mean dice ratio of 89.3% on 43 MR
volumes. The proposed algorithm used a hybrid 3D method that employed a combination of
graph cut and active contour model in a recursive manner to segment prostate MR images.
Additionally, for reducing the computational and memory costs, the proposed solution made
the shape and gray features robust, which further reduced the prospect of labeling the
superpixels with wrong labels. The dependence of the presented semi-automatic method on
the initial over segmentation called superpixel acted as a limitation of the proposed algorithm
[106]. Thus, Chilali et al. in 2016 gave an automatic paradigm to segment the prostate and
sequester the peripheral and transition zones. The proposed algorithm used a two-stage
process. Before the employment of the evidential c-means clustering for segmentation, the
target image was registered with each zonal atlas image. The approach proved to be ineffective
for prostate segmentation extremities, base and the apex, nevertheless the results were in close
proximity of the expert contours in the central part of the gland. Based on the experimental
evaluations on a representative and multi-centric image, the algorithm yielded a mean DSC of
0.81, 0.70 and 0.62 for the prostate, transition and peripheral zones respectively [24]. Further,
in 2017 Reda et al. used an emerging geometric deformable model to segment the DW-MRI
images. The model employed the nonnegative matrix factorization (NMF) and extracted
discerning features by fusing image intensities in the nearest 10-neighborhood of every voxel,
appended with voxel-wise prior and background probabilities of the prostate region. After
segmenting the prostate by clustering the voxels of the test image in the H-space, the final
segmentation was performed by the deformable model. The proposed method managed in
getting the overall DSC of 0.86 ± 0.04, absolute relative volume difference (ARVD) of 1.6 ±
3.2%, and Hausdorff distance (HD) of 5.8 ± 2.1 mm reflecting the high levels of accuracy for
the developed segmentation compared to other models taken into consideration [88].

Finally, Table 4 presents the summary of all the segmentation approaches used by different
researchers from time to time as discussed above and Table 5 presents the comparison of
broadly used state of the art segmentation approaches with pros and cons of each approach.

4.3 Classification

The section presents the classification approaches used by different researchers till date across
the globe. The approaches used are categorized into machine learning, deep learning and
hybrid. Machine learning classification techniques involve Support Vector Machines (SVM),
random forest, k-nearest neighbor (kNN), gradient boosting, logistic regression, naive bayes
etc. The deep learning approach comprises deep neural networks and convolutional neural
networks etc. Finally, the hybrid category includes a combination of machine learning and
deep learning techniques for classification.

4.3.1 Machine learning based approaches

Parfait et al. in 2012 reported an automated classification technique for prostate cancer spectra
using magnetic resonance spectroscopy (MRS). The set of features were extracted using
spectra i.e. phase and baseline correction, normalization and estimation of metabolites con-
centration. The study involved the use of SVM and NN classifiers. The results showed that
nuclear magnetic resonance spectra are sensitive enough to categorize healthy and cancerous
tissues using SVM. Thus, the best results were obtained using preprocessed spectra without
quantification taken as input for classification. But the approach can be further improved by
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automating the system for better results. Further, the undetermined spectra could be classified
for improved performance [83]. In the same year, Shah V et al. presented a decision support
system for localizing PCa using mp-MRI. The study confined to peripheral Zone PCa and
identification of cancer and normal regions in PZ by correlating with previous histology
specimens. Segmented regions on mp-MRI were projected on histopathology and were used
as a training set for decision support system (DSS). Thereafter, the machine learning approach
was performed on the training set and cancer probability maps were obtained. Finally, the
additional evolutionary i.e. genetic algorithmic approach was implemented to get the optimal
values of parameters. Also, the cross validation was placed with non-optimized SVM and
optimized SVM. Thus, the authors projected that the system should follow up an active
surveillance system in future for better diagnosis [99]. Later in 2014, Lehaire et al. gave the
CAD system for detection of PCa combining sparse dictionary learning and supervised
classification methods. The study is confined to voxel-based detection in peripheral zones
using mp-MRI. Feature extraction was performed in collaboration with supervised classifica-
tion and learned dictionaries. Thus, the classification methods were used to determine the
normal(N), normal but suspect (NS) and other classes of cancer. The level of cancer was
decided on the basis of gleason score ranged from 6 to 9 and the classification was performed
using supervised classifiers namely support vector machine (SVM) and logistic Regression.
But the use of sparse dictionary learning techniques was not able to improve the performance.
Thus, perspective deep learning methods can be associated with nonlinear supervised classi-
fication for obtaining cancer probability maps in correlation with gleason score [1]. Also,
Lemaitre et al. in 2015 proposed a unique approach for prostate cancer detection using mp-
MRI. But with the passage of time, diagnosis has become more serene for the patients and
experts as many of the parameters reduce its efficacy and increases the chances of detecting the
potential lesions at an early stage. Thus, various computer aided detection and diagnosis
techniques are developed and implemented. This study introduced a boosting approach in the
form of classifier i.e. gradient boosting classifier. Initially the automated detection of PCa was
done in per voxel manner with 3 T mp-MRI and the classification was performed using 3D
text tone based strategy. Authors suggested that registration and segmentation of mp-MRI data
should be discarded and applied before classification and features other than intensities for

Table 5 Comparison of Denoising approaches

S.No. Approach
Used

Pros Cons

1 Contour and
Shape
based [66]

It is a robust, versatile and efficient
approach. Handle sharp corners with
topological changes.

Construction of efficient velocity for the
level set function is time-consuming.
Under and over-segmentation.

2 Region/Atlas
based [91]

Provide better segmentation performance. Requires initial seed, making it less
automated. High time complexity.

3 Thresholding
[42]

Does not require prior information of the
image.

It does not work well for images with a
broad and flat range of pixels.

4 Clustering
[33]

Reduce false blobs. Obtain homogeneous
and heterogeneous regions.

Sensitive to initialization for a number of
clusters and center

5 Deep learning
[61]

Automated in nature High time and space complexity.

6 Hybrid [54] It includes the desirable properties and
excludes the undesirable properties of
each of the approaches in hybrid
segmentation.

High time and space complexity.
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improved performance [62]. Similarly, Fehr et al. in 2015 proposed automatic classification of
prostate cancer on the basis of gleason scoring system. The study introduced the project of
machine learning based classification in collaboration with apparent diffusion coefficient
(ADC) and T2 weighted MRI extracted features. The results showed that classification on
the basis of gleason scores was more accurate despite the involvement of highly imbalanced
data. The study was confined only for peripheral and transition zones with the validation of the
results by Pz and Pz, Tz in combination. The available data on Tz alone was not sufficient as
per the study and was found to be a major setback of the research. Thus, the results were based
on a retrospective dataset with no true validation. Authors also suggested that voxel wise
classification could be used to further improve the results [65]. Further. Trigui et al. in 2017
presented a tool for automatic classification and localization of prostate cancer using MRI and
Magnetic Resonance spectroscopy Imaging (MRSI). As the efficacy of detection and locali-
zation of cancer prone tissues increased with the proposed classifiers. The study described the
implementation of SVM and random forest-based classification techniques. It categorized the
segmented regions into three classes (Healthy, Benign, Malignant). The use of MRSI was
introduced in the study with MRI to compare with Parfait et al. [83] and was found to improve
the performance of classification along with quality of spectra as accuracy of global detection
of the extracted features enhanced by Mp-MRI. SVM classifiers were also tested for healthy
and malignant voxels and the random forest classifier for all the classes were included with
benign cases. The results were mapped on the color-coded maps (CAD tool). Global detection
was thus improved by modifying automatic classification and 3 D voxel neighborhood and the
size of the dataset made the results more robust. Further, analyzing and filtering 3D shape
tumours enhanced the efficacy [31]. In the same year, Liu et al. presented the CAD system
using multimodal MRI and targeted biopsy labels. The new PCa classification method was
introduced in the study which involved the integration of T2 weighted, diffusion weighted and
dynamic enhanced MRI images. Images were initially encoded in the DICOM format and the
system consisted of three steps. First the registration of modalities took place and then in the
second step, features were extracted to capture intensity and texture information of targeted
labels. Lastly, SVM and supervised learning methods were performed to detect suspicious
cancerous tissues. Further, the large dataset could be used to make the system more robust and
improve the results. Also, integration of other modalities could be implemented for the same
[109]. Recently, in 2018 Li et al. performed classification of prostate cancer on the basis of
gleason score using SVM. This study involved mp-MRI segmented images as input. After
segmentation gleason score was assigned to the level of prostate cancer. The study confined
only to central gland (CG) and on the basis of extracted features with mp-MRI eleven
parameters were deprived through histogram analysis including mean, median, 10th percentile,
skewness and kurtosis. The model was thus developed with 10-fold cross validation and the
end results were checked with two separate datasets. The results showed better accuracy for
classification with gleason score of PCa. Further, the authors suggested that validation and
analysis of the outcomes could be cross checked with more datasets to support the diagnostic
value of automated method [71]. Thus, solving the problem of accuracy and classification
imbalance, Abraham et al. in 2018 presented the collaboration of sparse autoencoder and
random forest classifier instead of softmax classifier. Three additional techniques were
developed in this study. Synthetic minority oversampling technique (SMOTE), weka resample
algorithm and adaptive synthetic (ADASYN) sampling were the approaches introduced in the
study. High level features were extracted in the same way as single layer sparse autoencoders.
Further, the grade was investigated with the use of mp-MRI biomarkers and the highly
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imbalanced dataset was taken in the ADASYN. The performance metrics were validated with
many classifiers but random forest achieved better results in comparison with others. Accuracy
and f-score increased up to a great level unlike in the previous study. Also, the automation of
the complete system could produce much better outcomes and reduce the manual approaches
[67]. Similarly, Reda et al. in 2018 developed a CAD system for early diagnosis of PCa. They
used clinical biomarkers based on prostate specific antigen (PSA) integrated with extracted
features from DW-MRI at different b values. The framework used constituted three steps, i.e.
prostate delineation, estimation and normalization of diffusion parameters and integration of
PSA based probabilities with initial probabilities acquired using stacked non-negativity con-
straint sparse autoencoders. Autoencoders involved the use of ADC cumulative distribution
functions for better accuracy. Transformation of PSA resulted in diagnostic probabilities was
done by a kNN classifier. Further the number of participants can be enhanced for robustness
and different cases of b values can be used for better accuracy [2]. Also, with few modifica-
tions Xu et al. in 2018 also reported an automated classification method for categorizing of
PCa using gleason scores. This work involved the automatic gleason grading of PCa using
H&E stained (digitized) whole slide biopsy images. The grading mechanism used completed
and statistical local binary patterns (CSLBP) descriptors. The whole slide images initially
separated out salient tumour tiles with high nuclei densities. Thereafter, the CSLBP textural
features were extracted to categorize gleason patterns into normal and abnormal cases. At the
end, CSLBP features were computed, augmented and utilized by multi-class SVMs with
assigned gleason scores to the biopsy. The SVM classifications results were then tested against
polynomial and gaussian kernels. Finally, the results showed that Gleason grading with
CSLBP was more accurate than state of the art textural features and the use of CSLBP in
other types of cancers could be of great significance [89].

4.3.2 Deep learning-based approaches

Liu et al. in 2017 projected a classification framework for PCa based on deep learning. This
study presented the imaging diagnosis method to ease the MRI dependence on expert skills
and experiences. The framework comprises convolutional neural networks (CNN) which is an
image classification model. The data used for experimentation was divided into two subsets
i.e. training and testing. The framework is confined with prostate cancer in the study but can be
used for other tasks of cancer as well. Grading and staging of PCa can also be left alone as an
area in this research [69]. Also, Abraham et al. in 2018 described the idea to classify the
prostate cancer grade groups using advanced extracted features. Initially, the high-level
features were extracted from handcrafted texture features including the implementation of
DNN stacked sparse autoencoders (SSAE). After feature extraction classification of PCa grade
were analyzed using mp-MRI biomarkers, placed with newly introduced softmax classifier
(SMC). The results were found to be quite better on the dataset containing 112 training and 70
testing images. Positive predictive values (PPV) and kappa score were the parameters
discussed in outcomes. The approach could be reduced with better mp-MRI modalities and
techniques [3]. Similarly, Ishioka et al. in 2018 presented a fully automated CAD algorithm for
the detection of PCa based on MRI. The study focused on global standardization and
variability problems. Introduction of CAD algorithm with convolution neural network
(CNN) reduced the extent of problems encountered in the state of the art. CNN was then
validated on training and testing data to achieve improved results. Thus, for comparison
graphics processing unit (GPU) algorithms were implemented and different receiver operating
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curves were analyzed. Automation of deep learning provided reproducible interpretation and
thus the algorithm could be tested against more datasets to check robustness of algorithms in
future [56]. Recently, Yuan Y et al. in 2019 presented an automated classification system for
PCa using mpMRI transfer learning model. PCa classification was performed on the gleason
scoring system and the study gave accurate and risk-free results. The study projected
multiparametric magnetic resonance transfer learning (MPTL) method to automatically clas-
sify PCa. Firstly, three stages CNN were developed to determine features from mp-MRI (T2w,
ADC). Thereafter, the extracted features were correlated to represent information of mp-MRI
sequences and the additional image similarity constraints were involved to distribute the
features in narrow angle regions. Based on the analysis, authors suggested that with point
constraints of softmax loss and image similarity loss in tuning process could provide features
with intraclass compactness and interclass separability [117]. Also, UCLA technology devel-
opment group in 2019 developed deep learning based computerized classification technique
using a hierarchical framework. The classification system was strictly based on mp-MRI
images. The development group invented an automated algorithm for analysis of mp-MRI
images using a deep learning approach. The algorithm was not confined to PCa only, as it
could be used for other areas as well. The biggest advantage of this technique was that it did
not require precise lesion boundaries for accurate analysis and is not only restricted to a smaller
number of training samples, solving the problem of robustness [111].

4.3.3 Hybrid based approaches

Niaf et al. in 2012 presented a CAD system with a feature set acquired from gray-level images.
The image features such as first order statistics, haralick features, gradient features, semi-
quantitative and quantitative (pharmacokinetic modeling) dynamic parameters were initially
extracted. The approach is confined only to the peripheral zone for the determination of PCa
based on mp-MRI. Based on the study, use of four sets of classifiers i.e. nonlinear support
vector machines (SVM), linear discriminant analysis, nearest neighbors and naive bayes were
analyzed. The classifiers were trained using supervised learning on the basis of t-test mutual
information, minimum redundancy and maximum relevance criteria to compare with a set of
feature selection techniques. Authors also revealed that the in-depth study of evaluation of the
radiologist’s performance with and without CAD systems could be of great significance [81].
Later, Wang et al. in 2017 reported fully automated MRI classification based on pathologically
confirmed PCa patients. The study involved the use of deep learning and non-deep learning for
classification and comparison of the outcomes with existing state of the art. Deep learning
constitutes of convolutional neural network (CNN) also termed as DCNN, while non-deep
learning methods with image recognition and analysis was performed using SIFT image
feature and bag-of-wood (BoW) with SVM. Thus experimental results showed that DCNN
gives considerably higher AUC than non-deep learning. Also, the authors revealed that fully
automated systems are of more significance than semi-automated systems. This study further
reduced the manual computation and increased the automation for lesions segmentation. But,
more effective DNN can be developed with least dependency on the patients. Another future
perspective could be checking the robustness of a system with additional quantitative features
[113]. Also, Yang et al. in 2017 projected a co-trained convolutional neural network for
diagnosis of prostate cancer. A weakly supervised CNN used in the study for localization of
PCa lesions used mp-MRI. The augmented method guided CNN to observe true features and
dominate the irrelevant patterns. This work was based on deep CNN and one stage SVM
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classifier to concurrently categorize the presence of lesions in the MRI image. Further, the
additional back propagated error E was introduced for optimized classification results and
consistent cancer response maps. Using these maps highly representative PCa relevant features
were acquired which led to more accurate results. Finally, the analysis revealed that discrim-
inative visual patterns could be learned from lesion locations [115].

Finally, Table 6 presents the summary of all the classification approaches used by different
researchers from time to time as discussed above and Table 7 presents the comparison of
broadly used state of the art classification approaches with pros and cons of each approach.

5 Performance metrics

These are the values used for analysis of the approaches and is given in section 3.1 for
denoising and section 3.2 for segmentation.

5.1 Denoising performance metrics

5.1.1 PSNR

PSNR is the ratio between corrupted noise power that affects the visual representation of an
image and maximum possible power of the signal. This is represented in terms of logarithmic
scale due to dynamic range of signals [53]. PSNR is defined as

PSNR ¼ 10:log10
MAX i

2

MSE

� �
ð1Þ

Here, MAXi is the maximum value of the pixel within the image and MSE is mean square
error.

5.1.2 MSE

It is the measure of average errors of the squares calculated as the difference between what is
estimated and the estimator. This corresponds to the expected value of loss in square as a result
of difference due to randomness [63]. The MSE is given as

MSE ¼ 1

m� n
∑
m−1

i¼0
∑
n−1

j¼0
I x; yð Þ−I 0

�
x; y

�h i2
ð2Þ

Here, m× n are the dimensions of image, is the initial image and I ' (x, y) is image after estimation.
The value of MSE is always positive and the one with less value is considered good.

5.1.3 SSIM

SSIM is the measure of similarity within two images which describes quality based on the initial
manipulated image as reference. It considers degradation in image as change perceived in structural
information, including both contrast and luminance masking terms. Luminance here is the distortion
in the image which tends to be less observable in bright regions, whereas contrast is the distortion
which becomes less visible in abrupt changes and textured regions [112]. SSIM is given as
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SSIM ¼ 2μFμF 0 þ c1ð Þ 2σFσF 0 þ c2ð Þ
μF

2 þ μF 02 þ c1ð Þ σF
2 þ σF 02 þ c2ð Þ ð3Þ

Where μF and μF' are average of F and F ', σF and σF' are variance of F and F ', c1 and c2 are
variables to stabilize the division using weak denomination, while F and F′ are input images.
Here, the higher value of SSIM specifies more similarity and vice versa.

5.2 Segmentation performance metrics [110]

5.2.1 Dice metric

Dice metric is a metric which is used to compare the similarity between two fields i.e.
segmented area and ground truth. In this case, it is given as

dm ¼ 2� Area A∩Bð Þ
Area Að Þ þ Area Bð Þ ð4Þ

Here, dm is a dice metric, A is a segmented area and B is an area of ground truth. More is the
value of dm better is the performance.

5.2.2 Area overlap

Area overlap is the metric which accesses how well the segmented area matches the actual
ground truth area and is given in eq. (5):

m1 ¼ Aseg∩Agt

Aseg∪Agt
ð5Þ

Here m1 is an overlap area ratio, Aseg is segmented area and Agt is ground truth area. More is
the value of m better is the performance.

5.3 Classification performance metric [120]

5.3.1 Sensitivity

Sensitivity is the probability of diseased occurrence to the total number of diseased occur-
rences and is given as:

Sensitivity ¼ Tp= Tpþ Fnð Þ ð6Þ
Here, Tp is a resultant where the classifier accurately predicts the positive class and Fn is a
resultant where the model wrongly predicts the negative class.

Table 7 Comparison of Classification Approaches

S.no. Approach used Pros Cons

1 Machine learning These approaches have less time
and space complexity

Requires extraction of handcrafted
features

2 Deep learning Automated in nature High time and space complexity
3 Hybrid Offers improved performance High time and space complexity
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5.3.2 Specificity

Specificity is the probability of non-diseased occurrences to the total number of non-diseased
occurrences and is given as:

Specificity ¼ Tn= Tnþ Fpð Þ ð7Þ
Here, Tn is a resultant where the model accurately predicts the negative class and Fp is a
resultant where the model wrongly predicts the positive class.

5.3.3 Accuracy

Accuracy is the state of being precise or correct and is given as:

Accuracy¼Tpþ Tn= Tpþ Tnþ Fpþ Fnð Þ � 100 ð8Þ

6 Results and discussions

6.1 Experimental setup

The experimentation was performed in python 3.7 and Tensorflow version 1.13.1 using scikit
and skimage libraries for the filters namely anisotropic, bilateral, gaussian, mean, non-local
means, median, wavelet and wiener. Furthermore, the execution was performed on the
following hardware setup:

& Workstation: MSI mobile workstation manufactured by Micro-Star International with
model MS-16P6 i.e. MSI WE63 8SI

& CPU: Intel Core i7 8th gen 8750H processor
& Graphics Card: NVIDIA Quadro P1000 graphics card
& Frequency: 1895.4 MHz
& Bandwidth: Maximum 1333 MHz

The public dataset discussed in section 1.3 was used for testing of denoising, segmentation and
classification approaches. The T2W images from MRI dataset comprising of images in. dcm
format was converted into .png for better results. Finally, the performance of denoising
approaches implemented were analysed using metrics such as PSNR, MSE and SSIM.
Whereas, the performance of shape and contour-based segmentation was analysed using dice
metric and area overlap. Further performance of classification was analysed using sensitivity,
specificity and accuracy.

Same set of images were used for denoising, segmentation and classification to avoid bias in
results. Images were initially corrupted by introducing different types of noises to evaluate the
performance of filters. Further, the segmentation and classification were performed on denoised
images. The input images used for training and evaluationwere initially cropped to 512X512 pixels
to better train the segmentation and classificationmodels due to increased visibility ofROI especially
in case of deep learning architectures. Also, in order to avoid overfitting, data augmentationwhich is
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an approach to increase the number of samples in the dataset was applied. Thus, techniques such as
rotation, flipping and zooming were used for data augmentation. First, the images were flipped
vertically, which doubled the dataset size. Thereafter, a horizontal flip was given to the images,
which further increased the number of images in the dataset.

6.2 Findings

Development of CADs for PCa is one of the challenging tasks that varies with use of different
imagingmodalities such as CT,MRI, mp-MRI, PET and radiomics. Among all themodalities used,
MRI is commonly used as it offers certain advantages over others such as lossless radiations, non-
invasive, easy acquisition and less cost. This paper presents the analysis of different denoising,
segmentation and classification approaches, which are significant steps for any CADs. Denoising is
the phenomenon to remove rician and gaussian noise present in MRI during acquisition using
different types of filters. Although different denoising filters have been used by researchers till date
for reduction of noise, they suppress the image details and also cause blurring effect due to extra
smoothness.While, few othersmake the computations complex and enhance the cost of treatment as
well. Different filters such as non-local means, neutrosophic set wiener filtering, median, anisotropic
etc. are used only for certain specific noises. Further, for the computational flexibility, somemethods
were proposed and implemented in the literature such as chi square unbiased risk estimation,
sylvester lyapunov equation and non-local means etc. Though they restricted the complexity of
computation yet image details suppression remains amajor challenge. In the traditionalmethods, use
of CT images reduced the contrast details of the images which further affected the overall
performance of denoising. MRI images solved the problem of lack of details of organs in the other
imaging modality. It provided the complete details of the tissues neighboring to cancerous ones.
Also, various models like curvelet transform, Gaussian scale mixture etc. were performed to
maintain image details. Thus, there is a need for an improved denoising algorithm which reduces
the noise without losing the significant visual information from images.

On the other hand, segmentation involves other major challenges such as extraction of over
or under region of interests (ROIs), computational complexity and automation. Semi-
automatic algorithms were initially appended in traditional manual approaches to reduce the
problem of automation. But all these approaches were prone to certain errors such as detection
of false ROIs. Thus, patient specific segmentations were performed to enhance accuracy and
feasibility but this further increased the time and reduced generalization leading to problems of
robustness and automation. Robustness raised an issue in almost all of the segmentation cases
and thus a large number of training and testing was suggested. Further, atlas-based methods
were implemented to improve the performance. But inflexible boundaries reducing the overall
performance of the images were found to be a major challenge to avoid. Also, various hybrid
2D and 3D methods were suggested in literature to get rid of these issues but computational
complexity was increased in this case. Thus, a need for a segmentation approach with less
computation, automation and improved performance was encountered.

Lastly, the final step of CADs i.e. classification was analyzed. Here, the selection of
significant features and classifiers plays a crucial role. Major challenges in the case of
traditional classification include extraction of different handcrafted features varying from
one study to another. As discussed, classification approaches are divided into three categories
i.e. machine learning, deep learning and hybrid. Most of the studies of classification involving
machine learning approach faced the problem of desirable accuracy and robustness. Some of
the machine learning classifiers like gradient boosting classifier, logistic regression etc. were
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introduced to improve the performance of the system. But recently, deep learning has gained a
kind attention as it solves the problem of automation but it needs large dataset with a variety of
images for training to make the classifier self-learn and perform better in testing. Also, hybrid
classification approaches collaborating machine learning and deep learning are encountered to
increase reproducibility, automation and robustness but with increased computation. The
expansion of involved classification techniques to other cases could lead to a large number
of undetermined issues. The studies revealed that the selection of the dataset would decide the
overall outcome of the classification. The grading of PCa was improvised with the use of a soft
max classifier. But it generated another cumbersome issue of classification of imbalance data.
Also, the dataset involved became a great concern. Highly representative PCa relevant CNN
features make concurrent lesion detection effective in classification. Most of the involved
studies are specific to a few zones only like peripheral zones, transition zones etc.

From the above discussions, challenges involved in denoising, segmentation and classifi-
cation of PCa were explored. Some of the common perspectives were suppressing of image
details and deteriorating the accuracy and robustness. Also, the automation of the approaches
made the investigation much better than others.

6.3 Denoising of Gaussian noise

The experimental results for denoising using different filters are given in Figs. 9, 10, 11, 12, 13
and 14 and Table 8.

6.4 Denoising of Rician noise

6.5 Denoising of Gaussian and Rician noise

In case of original image, the one with high error reflects low quality image and hence the
lower value of PSNR. Whereas, less error gives better image quality with higher value of
PSNR. However other filters such as Wavelet, gaussian, bilateral, anisotropic also give better
quality. But anisotropic filter gives an average PSNR of 28.29 and is thus considered the most
optimal. Further, in case of gaussian denoised image other filters such as Wavelet, gaussian,
bilateral, anisotropic and non-local means also give better quality. But anisotropic filter gives
an average PSNR of 28.29 and is thus considered the most optimal. Similarly, in case of rician
denoised image, it can be seen that the least value is shown by wiener filter with 27.67 PSNR
giving low quality image and highest quality is given by the non-local means filter with 28.25
PSNR. While, other filters such as Wavelet, gaussian, bilateral and anisotropic also give better
performance. But the anisotropic gives an average PSNR of 28.06 and is thus the most
optimal. Finally, in case of combined gaussian and rician denoised image it can be seen that
non-local means gives highest PSNR of 28.61, wiener gives least PSNR of 27.64 and
anisotropic gives optimal performance with PSNR of 28.34. Hence the best performance is
considered to be of anisotropic filter, as its values lie in median range i.e. neither too high nor
too low.

In case of MSE larger values represent the values scattered widely around its mean, and thus the
smaller value is preferred as it shows the values are dispersed closely to its mean value. Hence in
case of gaussian denoised image the least value is given by the non-local means filter as 95.68MSE
and the other filters such as anisotropic givesMSEof 96.22, bilateral with 97.70MSE, gaussianwith
98.95 MSE, while mean and median give the same value i.e. 101.80 MSE. Similarly, in case of
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rician denoised image the least value of MSE is observed to be 97.19 for non-local means, and
101.52 for anisotropic, 106.88 for bilateral, 103.75 for gaussian, 102.29 for mean, 105.03 for
median, 99.51 for wavelet, and the highest value is given byweiner with 111.10MSE and so is least

Fig. 9 (a) Original image (b) Image with Gaussian noise

Fig. 10 Filtering of gaussian noise using different filters (a) ANISOTROPIC FILTER (b) BILATERAL
FILTER (c) GAUSSIAN FILTER (d) MEAN FILTER (e) NON-LOCAL MEANS (f) MEDIAN FILTER (g)
WAVELET FILTER (h) WIENER FILTER
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preferred. Further, in case of combine gaussian and rician denoised image, the least value is given by
the non-local means filter as 89.55 MSE and the other filters gives MSE values as 95.13 for
anisotropic, 99.74 for bilateral, 97.34 for gaussian, 96.50 for mean, 101.27 for median, 92.89 for

Fig. 11 (a) Original image (b) Image with rician noise

Fig. 12 Filtering of Rician noise using different filter (a) ANISOTROPIC FILTER (b) BILATERAL FILTER
(c) GAUSSIAN FILTER (d) MEAN FILTER (e) NON-LOCALMEANS (f) MEDIAN FILTER (g) WAVELET
FILTER (h) WIENER FILTER
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wavelet, and the highest value is given as 111.92 for wiener and so is least preferred. But anisotropic
performs optimally with an average MSE of 96.22 for denoised gaussian noise image, MSE of
101.52 for denoised rician noise image and MSE of 95.13 for denoised gaussian and rician noise

Fig. 13 (a) Original image (b) Image with gaussian and rician noise

Fig. 14 Filtering of Gaussian and Rician noise using different filter (a) ANISOTROPIC FILTER (b) BILAT-
ERAL FILTER (c) GAUSSIAN FILTER (d) MEAN FILTER (e) NON-LOCALMEANS (f) MEDIAN FILTER
(g) WAVELET FILTER (h) WIENER FILTER
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image. Thus, the anisotropic filter is considered to be best as its value lies in the median range i.e.
neither too high nor too low.

In case of gaussian denoised image other filters have values of SSIM as 0.64 for anisotropic,
0.517 for bilateral, 0.574 for gaussian, 0.299 for mean, 0.448 for median, 0.556 for wavelet, 0.386
for wiener and the highest value is given by non-local means filter as 0.691. Further, in case of rician
denoised image the values of SSIM for filters are 0.01 for anisotropic, 0.012 for bilateral, 0.013 for
gaussian, 0.016 for mean and the highest value are 0.011 for median and 0.011 for wavelet, and the
SSIM for wiener is 0.009 and non-local means filter is 0.009. Whereas, the SSIM for combined
gaussian and rician denoised image are 0.652 for anisotropic, 0.639 for bilateral, 0.645 for gaussian,
0.363 for mean, 0.475 for median, 0.568 for wavelet and 0.344 for wiener. While, the highest value
is given by the non-local means filter as 0.657. But anisotropic performs optimally with average
SSIMof 0.64 for denoised gaussian noise image, SSIMof 0.01 for denoised rician noised image and
SSIM of 0.652 for denoised gaussian and rician noise image. Thus, the anisotropic filter is
considered to be best as its value lies in the median range i.e. neither too high nor too low.

6.6 Performance analysis of state-of-the-art segmentation approach

The experimental results for segmentation using state of the art approaches are given in Fig. 15
and Table 9.

On the basis of experimental analysis for segmentation of prostate using contour and
shape-based approach, values of dice metric and area overlap is observed to be 0.49 and
0.50. Similarly, region/atlas-based approach gave 0.56 dice metric and 0.60 area overlap;
whereas, thresholding gave 0.78 dice metric and 0.70 area overlap. Further, values of
dice metric and area overlap for clustering-based approach were 0.82 and 0.74. Finally,
deep learning-based FCN-32 gave dice metric of 0.89 and area overlap of 0.80. Thus, it
can be stated that FCN-32 outperformed contour and shape based, region/atlas based,
thresholding based and clustering.

6.7 Performance evaluation of classification

Performance analysis of classification was performed using different classifiers namely Support
vector machine (SVM), K nearest neighbour (K-NN), Random forest (RF) and Convolutional
neural network (CNN). SVM is a machine learning method which utilizes supervised learning to
perform classification by plotting each data item in m-dimensional feature space. K-NN uses
standard non-parametric techniques utilized for statistical pattern analysis by forming a fixed
sample space. Also, RF is classification using a learning method that performs computation at
training time by constructing magnitude to get the mean and mode of a class. Unlike Machine
Learning (SVM, K-NN, RF), CNN operates directly on denoised images. Further, handcrafted
textural features used for training machine learning classifiers were Gray level run length matrix
(GLRM) and Grey level co-occurrence matrix (GLCM) extracted from the image denoised using
anisotropic filter. Same set of features were used for training each classifier to avoid bias. The
commonly extracted GLCM features were Autocorrelation, Joint Average, Cluster Prominence,
Cluster Shade, Cluster Tendency, Contrast, Correlation, Difference Average, Difference Entropy,
Difference Variance, Joint Entropy, Difference, Variance, Joint Entropy, Inverse Variance, Max-
imum Probability, Sum Entropy, Sum Squares and MCC. While, the GLRM features extracted
here for classification includes Gray level non uniformity, Gray level non uniformity normalized,
Gray level variance, High gray level emphasis, Long run emphasis, Long run high gray level
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Table 9 Performance of Segmentation approaches

Approach Performance metric

Dice metric Area overlap

Contour and shape baseda 0.49 0.50
Region/Atlas basedb 0.56 0.60
Thresholding basedc 0.78 0.70
Clustering basedd 0.82 0.74
FCN-32 Deep learning approache 0.89 0.80

a https://github.com/mohitkumarahuja/Implementing-Active-contour-model-Snakes-Algorithm-
b https://github.com/anindox8/Atlas-Based-3D-Brain-Segmentation-in-T1-MRI
c https://github.com/himanshuRepo/2DNLMeKGSA
d https://github.com/ntrischi/Kmeans-Image-Segmentation
e https://github.com/Gurupradeep/FCN-for-Semantic-Segmentation

(a) (b) (c) 

(d) (e)

(f) (g)
Fig. 15 Performance of Segmentation approaches (a) Original image (b) Ground truth (c) Contour and shape
based (d) Region/Atlas based (e) Thresholding (f) Clustering based (g) FCN-32 Deep learning approach
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emphasis, Long run low gray level emphasis, Low gray level run emphasis, Run entropy, Run
length non uniformity, Run length non uniformity normalized, Run percentage, Run variance,
Short run emphasis, Short run high gray level emphasis, Short run low gray level emphasis.

Further, Table 10 shows the specific website links and performance analysis of
different state of the art classifiers.

Based on experimental analysis, sensitivity, specificity, accuracy of SVM is found to
be 87.30%, 89.34% and 85.45%. Further, K-NN shows sensitivity, specificity, accuracy
of 88.91%, 88.65%, 86.57%; and RF shows 92.67% sensitivity, 90.23% specificity,
91.29% accuracy. Finally, the CNN shows sensitivity of 94.55%, specificity of
93.34%, accuracy of 94.45%. Thus, it can be concluded that deep learning-based CNN
outperforms SVM, K-NN and RF.

7 Challenges and future scope

On the basis of subjective and objective analysis, various challenges are observed in the state
of the art that needs to be taken into consideration to improve the accuracy of pre-processing
and segmentation for classification of prostate as cancerous and non-cancerous. The prepro-
cessing of the MRI is observed to be a major challenge as it contains certain amount of
gaussian and rician noise which are removed by different filters namely curvelet, LMMSE,
median, non-local means, variational level set, weighting kernel with graphics processing
units, non-local PCA, thresholding, log partition along with gaussian scale and anisotropic.
Also, it is compressed and dimensions are reduced to further increase the computational speed,
but it leads in blurring, coarse texture and loss of image quality. Amongst the existing
approaches of preprocessing, anisotropic filter proved to be optimal however in future, the
hybrid approaches with use of more than one filters or deep learning-based approach could
further improve the quality of image and solve the state-of-the-art problems. Besides, there is a
problem of over-segmentation and under-segmentation of the prostate gland in MRI which
needs to be addressed. To overcome the problems of segmentation and improve the accuracy
several hybrid approaches and deep learning-based approaches can also be used in future.
Moreover, the challenges in the segmentation are due to the presence of various other glands
present in the nearby regions of the prostate which can be overcome by selection of the desired
region of interest. Thus, there is a need of improved preprocessing, segmentation and
classification approaches to diagnose the disease with improved performance. Further based

Table 10 Comparison of Classification approaches

Classifiers Sensitivity (in %) Specificity (in %) Accuracy (in %)

SVMf 87.30% 89.34% 85.45%
K-NNg 88.91% 88.65% 86.57%
RFh 92.67% 90.23% 91.29%
CNNi 94.55% 93.34% 95.45%

f https://github.com/whimian/SVM-Image-Classification
g https://github.com/iampavangandhi/KNN-Image-Classification
h https://github.com/dhwanirc/Image-Classification-with-CNN+RF/blob/master/Image_classification%20_
with%20_CNN+RF.ipynb?short_path=f814f92
i https://github.com/eiriniar/gleason_CNN
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on recent studies performed by Karami et al. [58] in 2018, To et al. [82] in 2018, Zhu et al.
[108] in 2018, Tian et al. [107] in 2018 and Hassanzadeh et al. [49] in 2019 it has been
observed that all these approaches are based on deep learning for segmentation of prostate
form MRI. Also, the recent approaches of classification by Ishioka et al. [56] in 2018, Yuan Y
et al. [117] in 2019 and UCLA development group [111] in 2019 used deep learning networks
to perform classification. Thus, current hotspot and research frontiers indicate advances of
deep learning-based approaches in the current era of research for segmentation of prostate
followed by its classification into malignant and benign cases in near future.

8 Conclusion

This paper presents the analysis of different denoising, segmentation and classification approaches
used so far for diagnosis of prostate cancer using MRI. It summarizes challenges in the field of
denoising, segmentation and classification based on the state-of-the-art approaches. Denoising
filters used by researchers till date for reduction of noise suppress the significant edge details and
cause blurring effect due to extra smoothness. Thus, there is a need for an improved denoising
algorithm which reduces the noise without losing the significant visual information from images.
While, segmentation involves other major challenges such as extraction of over or under region of
interests (ROIs), computational complexity, robustness and automation. Thus, a need for a seg-
mentation approach with less computation, automation and improved performance was encoun-
tered. Further, in the case of traditional classification, extraction of different handcrafted features
varies from one study to another. Most of the studies of classification involving machine learning
approach faced the problem of desirable accuracy and robustness. Although, in the current scenario
use of deep learning has gained a kind attention for segmentation and classification, as it solves the
problem of automation but it needs large dataset with a variety of images for training to make the
classifier self-learn and perform better in testing. Studies suggested that MRI are prone to certain
noise such as rician and gaussianwhich deteriorates the performance of further diagnosis. Although,
different filters such as anisotropic, bilateral, gaussian, mean, non-local means, median, wavelet and
weiner are being used in state of the art. But, on the basis of experimental analysis, it can be
concluded that anisotropic filter outperforms other filters for gaussian noise with PSNR of 28.29,
MSE of 96.22 and SSIM of 0.64. Also, for the rician noise anisotropic filter outperform others with
PSNR of 28.06, MSE of 101.52 and SSIM of 0.01. Similarly, for the combined gaussian and rician
noise, anisotropic filter outperforms others with PSNR of 28.34, MSE of 95.13 and SSIM of 0.652.
Further, the segmentation includes over-segmentation and under-segmentation issues which are
being addressed by different researchers till date. Thus, this study performed segmentation using a
deep learning-based FCN-32, which outperformed contour and shape based, region/atlas based,
thresholding based and clustering based with dice metric of 0.89 and area overlap of 0.80. Lastly, to
overcome the issues of hand-crafted feature extraction and selection in traditional classifiers,
classification performed using CNN offered better results than machine learning based SVM, K-
NN, RF with 94.55% sensitivity, 93.34% specificity and 95.45% accuracy. Thus, the current
research trend indicates use of deep learning to be a promising approach for segmentation and
classification, as it doesn’t require extraction of any handcrafted features. Only drawback it has is
the high space complexity and time complexity for initial training, but the same can also be
overcome by use of cloud computing in the near future. Further, the survey conducted state-of-
the-art used comparison of machine learning approaches and only few researchers utilized deep
learning approaches for comparison. However, this study could be considered cutting-edge due to
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use of currently employed deep learning approaches along with traditional machine learning
approaches for better analysis. Further, the manuscript gives the analysis of different modules of
CAD systems such as denoising, segmentation and classification all in one place which reduces the
search procedures for beginners making it easy to use.

Acknowledgments The authors are also grateful to the Ministry of Human Resource Development (MHRD),
Govt. of India for funding this project(17-11/2015-PN-1) under Design Innovation Centre (DIC) sub-theme
Medical Devices & Restorative Technologies.

References

1. Anonymous (2013) Automatic Diagnosis of Prostate cancer using Random Forest Classifier. https://www.
cs.ubc.ca/~nando/540-2013/projects/p55.pdf

2. Abraham B, Nair MS (2018 Jan 1) Computer-aided diagnosis of clinically significant prostate cancer from
MRI images using sparse autoencoder and random forest classifier. Biocybernetics and Biomedical
Engineering 38(3):733–744

3. Abraham B, Nair MS (2018 Nov 1) Computer-aided classification of prostate cancer grade groups from MRI
images using texture features and stacked sparse autoencoder. Comput Med Imaging Graph 69:60–68

4. Ahmed HU, Bosaily AE, Brown LC, Gabe R, Kaplan R, Parmar MK, Collaco-Moraes Y, Ward K,
Hindley RG, Freeman A, Kirkham AP (2017 Feb 25) Diagnostic accuracy of multi-parametric MRI and
TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389(10071):
815–822

5. Aja-Fernandez S, Alberola-Lopez C, Westin CF (2008) Noise and signal estimation in magnitude MRI
and Rician distributed images: a LMMSE approach. IEEE trans image process 17(8):1383–1398. https://
doi.org/10.1109/TIP.2008.925382

6. Ali HM (2018) MRI medical image denoising by fundamental filters. In High-Resolution Neuroimaging-
Basic Physical Principles and Clinical Applications 2018 Mar 14. Intech Open.

7. Alta Klinik: Multiparametric MRI of the Prostate (2019) Available at: https://www.altaklinik.com/prostate/
mri-prostata/ [accessed on 28 April 2019]

8. Álvarez C, Martínez F, Romero E (2015) An automatic multi-atlas prostate segmentation in MRI using a
multiscale representation and a label fusion strategy. In10th international symposium on medical information
processing and analysis 2015 Jan 28 (Vol. 9287, p. 92870D). International Society for Optics and Photonics

9. Andersen AH (1995) On the Rician distribution of noisy MRI data. Magn Reson Med 34(6):910–914.
https://doi.org/10.1002/mrm.1910360222

10. Anon (2019) [Online]. Available at: https://www.pcf.org/wp-content/uploads/2017/10/AN-
INTRODUCTION_PROSTATE_CANCER_ GUIDE-2014.pdf [accessed on 21 Apr. 2019]

11. Anon (2019) [ebook]. Available at: https://uroweb.org/wp-content/uploads/EAU_WhitePaper_Pca_final.
pdf [accessed on 21 Apr. 2019].

12. Applications and Clinical Benefits of MR Imaging | MRI Scan | Imaginis - The Women's Health &
Wellness Resource Network. Imaginis.com (2019). [online] Available at: http://www.imaginis.com/mri-
scan/applications-and-clinical-benefits-of-mr-imaging [Accessed on 30 April 2019]

13. Barbu A (2009) Training an active random field for real-time image denoising. IEEE Trans Image Process
18(11):2451–2462. https://doi.org/10.1109/TIP.2009.2028254

14. Bhadauria HS, Dewal ML (2013 Jul 1) Medical image denoising using adaptive fusion of curvelet
transform and total variation. Computers & Electrical Engineering 39(5):1451–1460

15. Biswas R, Purkayastha D, Roy S (2018) Denoising of MRI images using Curvelet transform. InAdvances
in systems, control and automation 2018 (pp. 575-583). Springer, Singapore.

16. Buades A, Coll B, Morel JM (2005) A non-local algorithm for image denoising. IEEE Comput Soc Conf
Comput Vision Pattern Recogn (CVPR) 2:60–65. https://doi.org/10.1109/CVPR.2005.38

17. Burrus CS, Gopinath RA, Guo H, Odegard JE, Selesnick IW (1998) Introduction to wavelets and wavelet
transforms: a primer.(Vol. 1). Prentice hall, New Jersey

18. Cammoun D, Davis KA, Hendee WR (1985 Dec) Clinical applications of magnetic resonance imaging—
current status. West J Med 143(6):793–803

19. Prostate Cancer (2011) PETwith 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J Nucl Med 52(1):81–89

Multimedia Tools and Applications

https://www.cs.ubc.ca/~nando/540-2013/projects/p55.pdf
https://www.cs.ubc.ca/~nando/540-2013/projects/p55.pdf
https://doi.org/10.1109/TIP.2008.925382
https://doi.org/10.1109/TIP.2008.925382
https://www.altaklinik.com/prostate/mri-prostata/
https://www.altaklinik.com/prostate/mri-prostata/
https://doi.org/10.1002/mrm.1910360222
https://www.pcf.org/wp-content/uploads/2017/10/AN-INTRODUCTION_PROSTATE_CANCER_%20GUIDE-2014.pdf
https://www.pcf.org/wp-content/uploads/2017/10/AN-INTRODUCTION_PROSTATE_CANCER_%20GUIDE-2014.pdf
https://uroweb.org/wp-content/uploads/EAU_WhitePaper_Pca_final.pdf
https://uroweb.org/wp-content/uploads/EAU_WhitePaper_Pca_final.pdf
http://www.imaginis.com/mri-scan/applications-and-clinical-benefits-of-mr-imaging
http://www.imaginis.com/mri-scan/applications-and-clinical-benefits-of-mr-imaging
https://doi.org/10.1109/TIP.2009.2028254
https://doi.org/10.1109/CVPR.2005.38


20. Candes EJ, Donoho DL (1999) Curvelets. Available from: http://www.stat.stanford.Edu/donoho/reports/
1999/curvelets.pdf. Accessed on 15 September 2016

21. Chandra SS,Dowling JA, ShenKK,Raniga P, Pluim JP,Greer PB, SalvadoO, Fripp J (2012Oct) Patient specific
prostate segmentation in 3-D magnetic resonance images. IEEE Trans Med Imaging 31(10):1955–1964

22. Chandra SS,Dowling JA, ShenKK,Raniga P, Pluim JP,Greer PB, SalvadoO, Fripp J (2012Oct) Patient specific
prostate segmentation in 3-D magnetic resonance images. IEEE Trans Med Imaging 31(10):1955–1964

23. Chen J, Benesty J, Huang Y, Doclo S (2006 Jun 19) New insights into the noise reduction wiener filter.
IEEE Trans Audio Speech Lang Process 14(4):1218–1234

24. Chilali O, Puech P, Lakroum S, Diaf M, Mordon S, Betrouni N (2016 Dec 1) Gland and zonal
segmentation of prostate on T2W MR images. J Digit Imaging 29(6):730–736

25. Choyke P, Turkbey B, Pinto P, Merino M, Wood B. (2016). Data From PROSTATE-MRI. The Cancer
Imaging Archive.

26. Clark T, Zhang J, Baig S, Wong A, Haider MA, Khalvati F (2017 Oct) Fully automated segmentation of
prostate whole gland and transition zone in diffusion-weighted MRI using convolutional neural networks.
Journal of Medical Imaging 4(4):041307

27. Ct Prostate Cancer Beach Towel for Sale by Medical Body Scans [Online]. Fine Art America (2019).
Available at: https://fineartamerica.com/featured/ct-prostate-cancer-medical-body-scans.html?product=
beach-towel [accessed on 27 April. 2019]

28. Das CJ, Razik A, Sharma S (2018 Jul) Positron emission tomography in prostate cancer: An update on
state of the art. Indian journal of urology: IJU: journal of the Urological Society of India 34(3):172–179

29. Do MN, Vetterli M (2005) The contourlet transform: an efficient directional multiresolu-tion image
representation. IEEE Trans Image Process 14(12):2091–2106. https://doi.org/10.1109/TIP.2005.859376

30. Dowling JA, Fripp J, Chandra S, Pluim JP, Lambert J, Parker J, Denham J, Greer PB, Salvado O (2011)
Fast automatic multi-atlas segmentation of the prostate from 3D MR images. InInternational workshop on
prostate Cancer imaging 2011 Sep 22 (pp. 10-21). Springer, Berlin, Heidelberg

31. Fehr D, Veeraraghavan H, Wibmer A, Gondo T, Matsumoto K, Vargas HA, Sala E, Hricak H, Deasy JO
(2015 Nov 17) Automatic classification of prostate cancer Gleason scores from multiparametric magnetic
resonance images. Proc Natl Acad Sci 112(46):E6265–E6273

32. Flores-Tapia D, Thomas G, Venugopal N, McCurdy B, Pistorius S (2008) Semi automatic MRI prostate
segmentation based on wavelet multiscale products. In2008 30th annual international conference of the
IEEE engineering in medicine and biology society 2008 Aug 20 (pp. 3020-3023). IEEE.

33. Francesco M, Schenone A (1999) A fuzzy clustering based segmentation system as support to diagnosis in
medical imaging. Artif Intell Med 16(2):129–147

34. Gao Y, Tannenbaum A (2011) Combining atlas and active contour for automatic 3D medical image
segmentation. In2011 IEEE international symposium on biomedical imaging: from Nano to macro 2011
mar 30 (pp. 1401-1404). IEEE

35. Gao Y, Tannenbaum A (2011) Combining atlas and active contour for automatic 3D medical image
segmentation. In2011 IEEE international symposium on biomedical imaging: from Nano to macro 2011
mar 30 (pp. 1401-1404). IEEE.

36. Garg G, Juneja M (2016) Anatomical visions of prostate Cancer in different modalities. Indian J Sci
Technol 9:44

37. Garg G, Juneja M (2018) A survey of prostate segmentation techniques in different imaging modalities.
Current Medical Imaging Reviews 14(1):19–46

38. Garg G, Juneja M (2018) A survey of denoising techniques for multi-parametric prostate MRI. Multimed
Tools Appl:1–34

39. Ghose S, Oliver A, Martí R, Lladó X, Vilanova JC, Freixenet J, Mitra J, Sidibé D, Meriaudeau F (2012) A
survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomog-
raphy images. Comp Methods Prog Biomed 108(1):262–287

40. Gillies RJ, Kinahan PE, Hricak H (2015 Nov 18) Radiomics: images are more than pictures, they are data.
Radiology. 278(2):563–577

41. Golshan HM, Hasanzadeh RP, Yousefzadeh SC (2013 Sep 1) An MRI denoising method using image data
redundancy and local SNR estimation. Magn Reson Imaging 31(7):1206–1217

42. Gonzalez RC, Woods RE (2002) Thresholding, digital image processing. Pearson Educ 59:595–611
43. Gonzalez RC, Woods RE, Eddins SL (2004) Digital image processing using MATLAB. Pearson Prentice

Hall, Upper Saddle River, New Jersey
44. Gopinath N (2012 Sep) Extraction of cancer cells fromMRI prostate image using MATLAB. International

Journal of Engineering Science and Innovative Technology (IJESIT) 1(1):27–35
45. Guo Y, Gao Y, Shao Y, Price T, Oto A, Shen D (2014 Jul) Deformable segmentation of 3D MR prostate

images via distributed discriminative dictionary and ensemble learning. Med Phys 1:41(7)

Multimedia Tools and Applications

http://www.stat.stanford.edu/donoho/reports/1999/curvelets.pdf
http://www.stat.stanford.edu/donoho/reports/1999/curvelets.pdf
https://fineartamerica.com/featured/ct-prostate-cancer-medical-body-scans.html?product=beach-towel
https://fineartamerica.com/featured/ct-prostate-cancer-medical-body-scans.html?product=beach-towel
https://doi.org/10.1109/TIP.2005.859376


46. Guo Y, Ruan S, Walker P, Feng Y (2014) Prostate cancer segmentation from multiparametric MRI based
on fuzzy Bayesian model. In2014 IEEE 11th international symposium on biomedical imaging (ISBI) 2014
Apr 29 (pp. 866-869). IEEE.

47. Guo Y, Gao Y, Shen D (2015 Dec 11) Deformable MR prostate segmentation via deep feature learning
and sparse patch matching. IEEE Trans Med Imaging 35(4):1077–1089

48. Haddad RA, Akansu AN (1991) A class and image processing. IEEE Trans Fast Gaussian Binomial Filters
Speech Signal Process 39(3):723–727. https://doi.org/10.1109/78.80892

49. Hassanzadeh T, Hamey LG, Ho-Shon K (2019) Convolutional neural networks for prostate magnetic
resonance image segmentation. IEEE Access 7:36748–36760

50. He B, Xiao D, Hu Q, Jia F (2018) Automatic magnetic resonance image prostate segmentation based on
adaptive feature learning probability boosting tree initialization and CNN-ASM refinement. IEEE Access.
6:2005–2015

51. Hossain MS, Paplinski AP, Betts JM (2018) Residual semantic segmentation of the prostate from magnetic
resonance images. InInternational conference on neural information processing 2018 Dec 13 (pp. 510-
521). Springer, Cham.

52. Huang T, Yang GJ, Tang G (1979) A fast two-dimensional median filtering algorithm. IEEE Trans Acoust
Speech Signal Process 27(1):13–18. https://doi.org/10.1109/TASSP.1979.1163188

53. Huynh-Thu Q, Ghanbari M (2008) Scope of validity of PSNR in image/video quality assessment. Electron
Lett 44(13):800–801

54. Imielinska C, Udupa J, Metaxas D, Jin Y, Angelini E, Chen T, Zhuge Y (2004) Hybrid Segmentation
Methods. Principles and Practice for Segmentation, Registration, and Image Analysis, pp. 351–388

55. Isa IS, Sulaiman SN, Mustapha M, Darus S (2015 Jan 1) Evaluating denoising performances of funda-
mental filters for t2-weighted MRI images. Procedia Computer Science 60:760–768

56. Ishioka J, Matsuoka Y, Uehara S, Yasuda Y, Kijima T, Yoshida S, Yokoyama M, Saito K, Kihara K,
Numao N, Kimura T (2018 Sep) Computer-aided diagnosis of prostate cancer on magnetic resonance
imaging using a convolutional neural network algorithm. BJU Int 122(3):411–417

57. Judith Marcin M and Lam P (2018) MRI Scans: Definition uses and procedure, Medical News Today [online].
Available at: https://www.medicalnewstoday.com/articles/146309.php [Accessed on 28 April 2019].

58. Karimi D, Samei G, Kesch C, Nir G, Salcudean SE (2018 Aug 1) Prostate segmentation in MRI using a
convolutional neural network architecture and training strategy based on statistical shape models. Int J
Comput Assist Radiol Surg 13(8):1211–1219

59. Kaur R, Juneja M, Mandal AK (2018) Computer-aided diagnosis of renal lesions in CT images: a
comprehensive survey and future prospects. Computers & Electrical Engineering. 2018 Aug 22.

60. Klosowski J, Frahm J (2017 Mar) Image denoising for real-time MRI. Magn ResonMed 77(3):1340–1352
61. LeCun Y, Bengio Y (2015 May) Hinton G. Deep learning nature 521(7553):436–444
62. Lehaire J, Flamary R, Rouvière O, Lartizien C (2014) Computer-aided diagnostic system for prostate

cancer detection and characterization combining learned dictionaries and supervised classification. In2014
IEEE international conference on image processing (ICIP) 2014 Oct 27 (pp. 2251-2255). IEEE.

63. Lehmann EL, Casella G (2006). Theory of point estimation. Springer Science & Business Media.
64. Lemaitre G, Mart R, Freixenet J, Vilanova JC,Walker PM,Meriaudeau F (2015) Computer-aided detection and

diagnosis for prostate cancer based on mono and multi-parametric MRI: a review. Comput Biol Med 60:8–31
65. Lemaitre G, Massich J, Martí R, Freixenet J, Vilanova JC, Walker PM, Sidibé D, Mériaudeau F (2015) A

boosting approach for prostate cancer detection using multi-parametric MRI. InTwelfth international
conference on quality control by artificial vision 2015 2015 Apr 30 (Vol. 9534, p. 95340A).
International Society for Optics and Photonics.

66. Leventon ME, Grimson WE, Faugeras O (2002) Statistical shape influence in geodesic active contours.
In5th IEEE EMBS international Summer School on biomedical imaging. 2002 Jun 15 (pp. 8-pp). IEEE

67. Li J, Weng Z, Xu H, Zhang Z, Miao H, Chen W, Liu Z, Zhang X, Wang M, Xu X, Ye Q (2018 Jan 1)
Support vector machines (SVM) classification of prostate cancer Gleason score in central gland using
multiparametric magnetic resonance images: a cross-validated study. Eur J Radiol 98:61–67

68. Lim JS (1990) Two-dimensional signal and image processing. Prentice hall, Englewood Cli s, NJ, pp. 710
69. Liu Y, An X (2017) A classification model for the prostate cancer based on deep learning. In2017 10th

international congress on image and signal processing, BioMedical engineering and informatics (CISP-
BMEI) 2017 Oct 14 (pp. 1-6). IEEE.

70. Liu X, Langer DL, Haider MA, Yang Y, Wernick MN, Yetik IS (2009 Jun) Prostate cancer segmentation
with simultaneous estimation of Markov random field parameters and class. IEEE Trans Med Imaging
28(6):906–915

71. Liu P, Wang S, Turkbey B, Grant K, Pinto P, Choyke P, Wood BJ, Summers RM (2013) A prostate cancer
computer-aided diagnosis system using multimodal magnetic resonance imaging and targeted biopsy

Multimedia Tools and Applications

https://doi.org/10.1109/78.80892
https://doi.org/10.1109/TASSP.1979.1163188
https://www.medicalnewstoday.com/articles/146309.php


labels. InMedical imaging 2013: computer-aided diagnosis 2013 Feb 26 (Vol. 8670, p. 86701G).
International Society for Optics and Photonics

72. Liu L, Yang H, Fan J, Liu RW, Duan Y (2019) Rician nowase and intensity nonuniformity correction
(NNC) model for MRI data. Biomedical Signal Processing and Control. 49:506–519

73. Luisier F, Blu T, Wolfe PJ (2012) A CURE for noisy magnetic resonance images: chi-square unbiased risk
estimation. IEEE Trans Image Process 21(8):3454–3466. https://doi.org/10.1109/TIP.2012.2191565

74. Macovski A (1996) Noise in MRI. Magn Reson Med 36(3):494–497. https://doi.org/10.1002/mrm.
1910360327

75. Malmberg F, Strand R, Kullberg J, Nordenskjöld R, Bengtsson E (2012 Oct) Smart paint a new interactive
segmentation method applied to MR prostate segmentation. MICCAI Grand Challenge: Prostate MR
Image Segmentation 2012

76. Manjón JV, Coupé P, Buades A (2015 May 1) MRI noise estimation and denoising using non-local PCA.
Med Image Anal 22(1):35–47

77. Martin S, Troccaz J, Daanen V (2010 Apr) Automated segmentation of the prostate in 3D MR images
using a probabilistic atlas and a spatially constrained deformable model. Med Phys 37(4):1579–1590

78. Mohammadi M, Nabavi S (n.d.) Improvement in auto-contouring approaches using region growing
segmentation for prostate cancer radiotherapy

79. Mohan J, Krishnaveni V, Guo Y (2013 Nov 1) MRI denoising using nonlocal neutrosophic set approach
of wiener filtering. Biomedical Signal Processing and Control. 8(6):779–791

80. Nam D, Barrack RL, Potter HG (2014) What are the advantages and disadvantages of imaging modalities
to diagnose wear-related corrosion problems? Clinical Orthopaedics and Related Research®. 2014
Dec 1;472(12):3665–73

81. Niaf E, Rouvière O, Mège-Lechevallier F, Bratan F, Lartizien C (2012 May 29) Computer-aided diagnosis
of prostate cancer in the peripheral zone using multiparametric MRI. Phys Med Biol 57(12):3833–3851

82. Ozer S, Langer DL, Liu X, Haider MA, Van der Kwast TH, Evans AJ, Yang Y, Wernick MN, Yetik IS
(2010 Apr) Supervised and unsupervised methods for prostate cancer segmentation with multispectral
MRI. Med Phys 37(4):1873–1883

83. Parfait S, Walker PM, Créhange G, Tizon X, Miteran J (2012 Sep 1) Classification of prostate magnetic
resonance spectra using support vector machine. Biomedical Signal Processing and Control. 7(5):499–508

84. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern
Anal Mach Intell 12(7):629–639. https://doi.org/10.1109/34.56205

85. Prostate Cancer Is the Leading Cancer in India: Prostate Cancer Treatment in India Cytecare (2019)
[Online]. Available at: https://www.cytecare.com/blog/prostate-cancer-is-the-leading-cancer-in-india
[accessed on 27 April 2019].

86. Prostate Cancer: India Against Cancer, (2019) [Online]. Available at: http://cancerindia.org.in/prostate-
cancer [accessed on 27 April 2019]

87. Rajan J, Veraart J, Van Audekerke J, Verhoye M, Sijbers J (2012 Dec 1) Nonlocal maximum likelihood
estimation method for denoising multiple-coil magnetic resonance images. Magn Reson Imaging 30(10):
1512–1518

88. Reda I, Shalaby A, Elmogy M, Elfotouh AA, Khalifa F, El-Ghar MA, Hosseini-Asl E, Gimel'farb G,
Werghi N, El-Baz A (2017 Feb 1) A comprehensive non-invasive framework for diagnosing prostate
cancer. Comput Biol Med 81:148–158

89. Reda I, Khalil A, Elmogy M, Abou El-Fetouh A, Shalaby A, Abou El-Ghar M, Elmaghraby A, Ghazal M,
El-Baz A (2018 May 25) Deep learning role in early diagnosis of prostate cancer. Technology in cancer
research & treatment 17:1533034618775530

90. Redpath TW (1998) Signal-to-noise ratio in MRI. Br J Radiol 71(847):704–707. 10.1259
/bjr.71.847.9771379

91. Rohlfing T, Brandt R, Menzel R, Russakoff DB, Maurer CR (2005) Quo vadis, atlas-based segmentation?.
InHandbook of biomedical image analysis 2005 (pp. 435-486). Springer, Boston, MA.

92. Romberg JK, Choi H, Baraniuk RG (2001) Bayesian tree-structured image modeling using wavelet
domain hidden Markov models. IEEE Trans Image Process 10(7):1056–1068. https://doi.org/10.1109/
83.931100

93. Roth S, Black MJ (2005) Fields of experts: a framework for learning image priors. IEEE Conf Comput
Vision Pattern Recogn (CVPR) 2:860–867. https://doi.org/10.1109/CVPR.2005.160

94. Rundo L, Militello C, Russo G, Garufi A, Vitabile S, Gilardi MC, Mauri G (2017 Jun) Automated prostate
gland segmentation based on an unsupervised fuzzy C-means clustering technique using multispectral
T1w and T2w MR imaging. Information. 8(2):49

95. Ryan O (2019) Hare, Researchers to investigate screening for prostate cancer using MRI (April 2018)
[online]. Available at: https://www.imperial.ac.uk/news/185591/researchers-investigate-screening-
prostate-cancer-using/ [Accessed on 28 April 2019]

Multimedia Tools and Applications

https://doi.org/10.1109/TIP.2012.2191565
https://doi.org/10.1002/mrm.1910360327
https://doi.org/10.1002/mrm.1910360327
https://doi.org/10.1109/34.56205
https://www.cytecare.com/blog/prostate-cancer-is-the-leading-cancer-in-india
http://cancerindia.org.in/prostate-cancer
http://cancerindia.org.in/prostate-cancer
https://doi.org/10.1109/83.931100
https://doi.org/10.1109/83.931100
https://doi.org/10.1109/CVPR.2005.160
https://www.imperial.ac.uk/news/185591/researchers-investigate-screening-prostate-cancer-using/
https://www.imperial.ac.uk/news/185591/researchers-investigate-screening-prostate-cancer-using/


96. Samiee M, Thomas G, Fazel-Rezai R (2006) Semi-automatic prostate segmentation of MR images based
on flow orientation. In2006 IEEE international symposium on signal processing and information technol-
ogy 2006 Aug (pp. 203-207). IEEE.

97. Sarkar S, Das S (2016) A review of imaging methods for prostate cancer detection: supplementary issue:
image and video acquisition and processing for clinical applications. Biomedical engineering and compu-
tational biology. 2016 Jan;7: BECB-S34255.Table 1, A summary of clinical usage, advantages, and
disadvantages across imaging modalities for pca imaging ;p.4

98. Seetha J, Raja SS (2016) Denoising of MRI images using filtering methods. In2016 international
conference on wireless communications, signal processing and networking (WiSPNET) 2016 mar 23
(pp. 765-769). IEEE.

99. Shah V, Turkbey B, Mani H, Pang Y, Pohida T, Merino MJ, Pinto PA, Choyke PL, Bernardo M (2012)
Decision support system for localizing prostate cancer based on multiparametric magnetic resonance
imaging. Medical physics. 2012 Jul 1;39(7Part1):4093–103

100. Sharma KK, Gurjar D, Jyotyana M, Kumari V (2019) Denoising of brain MRI images using a hybrid filter
method of Sylvester-Lyapunov equation and non local means. InSmart innovations in communication and
computational sciences 2019 (pp. 495-505). Springer, Singapore.

101. Smith CP, Czarniecki M, Mehralivand S, Stoyanova R, Choyke PL, Harmon S, Turkbey B (2018 Jun)
Radiomics and radiogenomics of prostate cancer. Abdominal Radiology 20:1–9

102. Smith-Bindman R (2010 Jul 1) Is computed tomography safe. N Engl J Med 363(1):1–4
103. Subudhi BN, Thangaraj V, Sankaralingam E, Ghosh A (2016 Nov 1) Tumor or abnormality identification

from magnetic resonance images using statistical region fusion based segmentation. Magn Reson Imaging
34(9):1292–1304

104. Sudeep PV, Palanisamy P, Kesavadas C, Rajan J (2015 Jul 1) Nonlocal linear minimum mean square error
methods for denoising MRI. Biomedical Signal Processing and Control. 20:125–134

105. Tian Z, Liu L, Fei B (2015) A supervoxel-based segmentation method for prostate MR images. InMedical
imaging 2015: image processing 2015 mar 20 (Vol. 9413, p. 941318). International Society for Optics and
Photonics

106. Tian Z, Liu L, Zhang Z, Fei B (2016 Mar) Superpixel-based segmentation for 3D prostate MR images.
IEEE Trans Med Imaging 35(3):791–801

107. Tian Z, Liu L, Zhang Z, Fei B (2018 Jan) PSNet: prostate segmentation on MRI based on a convolutional
neural network. Journal of Medical Imaging. 5(2):021208

108. To MN, Vu DQ, Turkbey B, Choyke PL, Kwak JT (2018 Nov 1) Deep dense multi-path neural network for
prostate segmentation in magnetic resonance imaging. Int J Comput Assist Radiol Surg 13(11):1687–1696

109. Trigui R, Mitéran J, Walker PM, Sellami L, Hamida AB (2017 Jan 1) Automatic classification and
localization of prostate cancer using multi-parametric MRI/MRS. Biomedical Signal Processing and
Control 31:189–198

110. Tustison NJ, Gee JC (2009) Introducing dice, Jaccard, and other label overlap measures to ITK. Insight J
2009 Jul;2.

111. Ucla technology development group (2019) University of californiaedu. [Online]. Available from: https://
techtransfer.universityofcalifornia.edu/NCD/29986.html [Accessed 30 April 2019]

112. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to
structural similarity. IEEE Trans Image Process 13(4):600–612

113. Wang X, Yang W, Weinreb J, Han J, Li Q, Kong X, Yan Y, Ke Z, Luo B, Liu T, Wang L (2017 Nov 13)
Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning
versus non-deep learning. Sci Rep 7(1):15415

114. Weiss Y, FreemanWT (2007) What makes a good model of natural images?. In: IEEE conference on computer
vision and pattern recognition (CVPR) (pp 1-8). Doi: https://doi.org/10.1109/CVPR.2007.383092

115. Yang X, Liu C, Wang Z, Yang J, Le Min H, Wang L, Cheng KT (2017 Dec 1) Co-trained convolutional
neural networks for automated detection of prostate cancer in multi-parametric MRI. Med Image Anal 42:
212–227

116. Yuan J (2018 Nov 1) An improved variational model for denoising magnetic resonance images.
Computers & Mathematics with Applications 76(9):2212–2222

117. Yuan Y, Qin W, Buyyounouski M, Ibragimov B, Hancock S, Han B, Xing L (2019 Feb) Prostate cancer
classification with multiparametric MRI transfer learning model. Med Phys 46(2):756–765

118. Zhu Y, Williams S, Zwiggelaar R (2007 Jun 1) A hybrid ASM approach for sparse volumetric data
segmentation. Pattern recognition and image analysis 17(2):252–258

119. Zhu H, Li Y, Ibrahim JG, Shi X, An H, Chen Y, Gao W, Lin W, Rowe DB, Peterson BS (2009)
Regression models for identifying noise sources in magnetic resonance images. J Am Stat Assoc 104(486):
623–637. https://doi.org/10.1198/jasa.2009.00299

Multimedia Tools and Applications

https://techtransfer.universityofcalifornia.edu/NCD/29986.html
https://techtransfer.universityofcalifornia.edu/NCD/29986.html
https://doi.org/10.1109/CVPR.2007.383092
https://doi.org/10.1198/jasa.2009.00299


120. Zhu W, Zeng N, Wang N (2010) Sensitivity, specifcity, accuracy, associated confdence interval and ROC
analysis with practical SAS implementations. NESUG Proc 14(19):67

121. ZhuY,Wei R, GaoG,Ding L, ZhangX,WangX, Zhang J (2019Apr) Fully automatic segmentation on prostate
MR images based on cascaded fully convolution network. J Magn Reson Imaging 49(4):1149–1156

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Mamta Juneja1 & Sumindar Kaur Saini1 & Jatin Gupta1 & Poojita Garg1 & Niharika
Thakur1 & Aviral Sharma1 & Manan Mehta1 & Prashant Jindal1

* Prashant Jindal
jindalp@pu.ac.in

Mamta Juneja
mamtajuneja@pu.ac.in

Sumindar Kaur Saini
sumindarkaursaini@gmail.com

Jatin Gupta
jatingupta1595@gmail.com

Poojita Garg
poojita8garg@gmail.com

Niharika Thakur
niharikathakur04@gmail.com

Aviral Sharma
100aviral100@gmail.com

Manan Mehta
manan161200@gmail.com

1 University Institute of Engineering and Technology, Panjab University, Chandigarh, India

Multimedia Tools and Applications

mailto:jindalp@pu.ac.in

	Survey of denoising, segmentation and classification of magnetic resonance imaging for prostate cancer
	Abstract
	Introduction
	Imaging modality used for diagnosis
	CT [102]
	MRI [57]
	Multiparametric MRI (mp-MRI) [4, 38]
	PET [28]
	Radiomics based [40]

	MRI public datasets

	Prostate <?thyc=10?>-benchmark<?thyc=5?> <AQ qid=
	Outline placeholder
	Prostate <?thyc=10?>–<?thyc=5?> MRI

	Literature survey
	Denoising
	Segmentation
	Contour and shape based approaches
	Region/atlas based approaches
	Thresholding based segmentation approaches
	Clustering based segmentation approaches
	Deep learning-based approaches
	Hybrid based approaches

	Classification
	Machine learning based approaches
	Deep learning-based approaches
	Hybrid based approaches


	Performance metrics
	Denoising performance metrics
	PSNR
	MSE
	SSIM

	Segmentation performance metrics [110]
	Dice metric
	Area overlap

	Classification performance metric [120]
	Sensitivity
	Specificity
	Accuracy


	Results and discussions
	Experimental setup
	Findings
	Denoising of Gaussian noise
	Denoising of Rician noise
	Denoising of Gaussian and Rician noise
	Performance analysis of state-of-the-art segmentation approach
	Performance evaluation of classification

	Challenges and future scope
	Conclusion
	References


